Page last updated: 2024-08-24

epicatechin gallate and kaempferol

epicatechin gallate has been researched along with kaempferol in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (16.67)29.6817
2010's5 (83.33)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Brun, R; Lack, G; Perozzo, R; Rüedi, P; Scapozza, L; Tasdemir, D1
Amić, D; Lucić, B1
Abramson, HN1
Bisson, J; Cluzet, S; Corio-Costet, MF; Lambert, C; Mérillon, JM; Papastamoulis, Y; Richard, T; Waffo-Téguo, P1
Kosaka, Y; Mizuguchi, M; Yokoyama, T1
Golonko, A; Lazny, R; Lewandowski, W; Pienkowski, T; Roszko, M; Swislocka, R1

Reviews

1 review(s) available for epicatechin gallate and kaempferol

ArticleYear
Another look at phenolic compounds in cancer therapy the effect of polyphenols on ubiquitin-proteasome system.
    European journal of medicinal chemistry, 2019, Apr-01, Volume: 167

    Topics: Animals; Diet; Humans; Neoplasms; Phenols; Polyphenols; Proteasome Endopeptidase Complex; Ubiquitin

2019

Other Studies

5 other study(ies) available for epicatechin gallate and kaempferol

ArticleYear
Inhibition of Plasmodium falciparum fatty acid biosynthesis: evaluation of FabG, FabZ, and FabI as drug targets for flavonoids.
    Journal of medicinal chemistry, 2006, Jun-01, Volume: 49, Issue:11

    Topics: 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase; Alcohol Oxidoreductases; Animals; Antimalarials; Catechin; Cells, Cultured; Chloroquine; Drug Resistance; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH); Fatty Acids; Flavones; Flavonoids; Humans; Hydro-Lyases; Kinetics; Luteolin; Phenols; Plasmodium falciparum; Polyphenols; Structure-Activity Relationship

2006
Reliability of bond dissociation enthalpy calculated by the PM6 method and experimental TEAC values in antiradical QSAR of flavonoids.
    Bioorganic & medicinal chemistry, 2010, Jan-01, Volume: 18, Issue:1

    Topics: Flavonoids; Free Radical Scavengers; Models, Biological; Quantitative Structure-Activity Relationship; Quantum Theory; Software; Thermodynamics

2010
The lipogenesis pathway as a cancer target.
    Journal of medicinal chemistry, 2011, Aug-25, Volume: 54, Issue:16

    Topics: Acetyl-CoA Carboxylase; Animals; Antineoplastic Agents; ATP Citrate (pro-S)-Lyase; Biosynthetic Pathways; Fatty Acid Synthases; Fatty Acids; Humans; Lipogenesis; Models, Chemical; Molecular Structure; Neoplasms

2011
Phenolics and their antifungal role in grapevine wood decay: focus on the Botryosphaeriaceae family.
    Journal of agricultural and food chemistry, 2012, Dec-05, Volume: 60, Issue:48

    Topics: Antifungal Agents; Ascomycota; Benzofurans; Host-Pathogen Interactions; Inhibitory Concentration 50; Phenols; Plant Diseases; Plant Stems; Stilbenes; Vitis; Wine; Wood

2012
Structural Insight into the Interactions between Death-Associated Protein Kinase 1 and Natural Flavonoids.
    Journal of medicinal chemistry, 2015, Sep-24, Volume: 58, Issue:18

    Topics: Adenosine Triphosphate; Allosteric Site; Anilino Naphthalenesulfonates; Binding, Competitive; Crystallography, X-Ray; Death-Associated Protein Kinases; Flavonoids; Kaempferols; Protein Binding; Protein Conformation; Structure-Activity Relationship

2015