epicatechin has been researched along with kaempferol in 26 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 4 (15.38) | 18.2507 |
2000's | 9 (34.62) | 29.6817 |
2010's | 12 (46.15) | 24.3611 |
2020's | 1 (3.85) | 2.80 |
Authors | Studies |
---|---|
Chu, SC; Hsieh, YS; Lin, JY | 1 |
Habtemariam, S | 1 |
Calomme, M; Cimanga, K; Cos, P; Hu, JP; Pieters, L; Van Poel, B; Vanden Berghe, D; Vlietinck, AJ; Ying, L | 1 |
Ash, K; Grohmann, K; Manthey, CL; Manthey, JA; Montanari, A | 1 |
Broedel, SE; Cihlar, RL; ElSohly, HN; Ferreira, D; Jacob, MR; Joshi, AS; Khan, IA; Khan, SI; Li, XC; Raulli, RE; Walker, LA; Zhang, Z | 1 |
Bais, HP; Kennan, AJ; Stermitz, FR; Vivanco, JM; Walker, TS | 1 |
Baggett, S; Cui, B; Hequet, V; Kennelly, EJ; Ma, C; Mori, S; Protiva, P; Weinstein, IB; Yang, H | 1 |
Backlund, A; Bohlin, L; Gottfries, J; Larsson, J | 1 |
Brun, R; Lack, G; Perozzo, R; Rüedi, P; Scapozza, L; Tasdemir, D | 1 |
Chang, FR; Chen, IH; Chen, SL; Du, YC; Hsieh, PW; Wu, CC; Wu, YC; Yen, HF | 1 |
Medić-Sarić, M; Rastija, V | 1 |
Chou, CJ; Frei, N; Grigorov, M; Lo Piparo, E; Scheib, H; Williamson, G | 1 |
Gestwicki, JE; Reinke, AA; Seh, HY | 1 |
Carver, JA; Duggan, PJ; Ecroyd, H; Liu, Y; Meyer, AG; Tranberg, CE | 1 |
Amić, D; Lucić, B | 1 |
Chang, FR; Hwang, TL; Lee, CL; Liao, YC; Wu, CC; Wu, YC | 1 |
Goettert, M; Koch, P; Laufer, S; Merfort, I; Schattel, V | 1 |
Kogami, Y; Matsuda, H; Nakamura, S; Sugiyama, T; Ueno, T; Yoshikawa, M | 1 |
Cai, S; Chu, L; Gao, F; Ji, B; Jia, G; Liu, J; Liu, Y; Wang, A; Wei, Y; Wu, W; Xie, L; Zhang, D; Zhou, F | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Bisson, J; Cluzet, S; Corio-Costet, MF; Lambert, C; Mérillon, JM; Papastamoulis, Y; Richard, T; Waffo-Téguo, P | 1 |
Burger, MC; Corrêa, CJ; da Silva, MF; de Sousa, LR; de Souza, DH; Fernandes, JB; Iemma, MR; Lima, MI; Nebo, L; Ramalho, SD; Vieira, PC | 1 |
Adfa, M; Efdi, M; Hayashi, M; Kakumu, A; Koketsu, M; Ninomiya, M; Tanaka, K | 1 |
Bicknell, KA; Farrimond, JA; Putnam, SE; Swioklo, S; Watson, KA; Williamson, EM | 1 |
Alunda, JM; Baptista, C; Behrens, B; Bifeld, E; Borsari, C; Clos, J; Cordeiro-da-Silva, A; Corral, MJ; Costantino, L; Costi, MP; Dello Iacono, L; Di Pisa, F; Eick, J; Ellinger, B; Ferrari, S; Gribbon, P; Gul, S; Henrich, S; Jiménez-Antón, MD; Keminer, O; Kohler, M; Kuzikov, M; Landi, G; Luciani, R; Mangani, S; Pellati, F; Poehner, I; Pozzi, C; Reinshagen, J; Santarem, N; Tait, A; Tejera Nevado, P; Torrado, J; Trande, M; Wade, RC; Witt, G; Wolf, M | 1 |
Albiñana, CB; Brynda, J; Fanfrlík, J; Flieger, M; Hodek, J; Karlukova, E; Konvalinka, J; Kožíšek, M; Machara, A; Majer, P; Radilová, K; Weber, J; Zima, V | 1 |
26 other study(ies) available for epicatechin and kaempferol
Article | Year |
---|---|
Inhibitory effects of flavonoids on Moloney murine leukemia virus reverse transcriptase activity.
Topics: DNA Polymerase I; Flavonoids; Leukemia Virus, Murine; Reverse Transcriptase Inhibitors; Structure-Activity Relationship | 1992 |
Flavonoids as inhibitors or enhancers of the cytotoxicity of tumor necrosis factor-alpha in L-929 tumor cells.
Topics: Animals; Apoptosis; Drug Synergism; Flavonoids; Mice; Tumor Cells, Cultured; Tumor Necrosis Factor-alpha | 1997 |
Structure-activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and superoxide scavengers.
Topics: Enzyme Inhibitors; Flavonoids; Free Radical Scavengers; Structure-Activity Relationship; Xanthine Oxidase | 1998 |
Polymethoxylated flavones derived from citrus suppress tumor necrosis factor-alpha expression by human monocytes.
Topics: Citrus; Cyclic AMP; Flavonoids; Humans; In Vitro Techniques; Lipopolysaccharides; Monocytes; Phosphodiesterase Inhibitors; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Tumor Necrosis Factor-alpha | 1999 |
Fatty acid synthase inhibitors from plants: isolation, structure elucidation, and SAR studies.
Topics: Antifungal Agents; Candida albicans; Combretaceae; Cryptococcus neoformans; Enzyme Inhibitors; Fatty Acid Synthases; Inhibitory Concentration 50; Isoflavones; Melastomataceae; Molecular Structure; Moraceae; Paspalum; Plants, Medicinal; Saccharomyces cerevisiae; Structure-Activity Relationship; Tannins; Triterpenes | 2002 |
Structure-dependent phytotoxicity of catechins and other flavonoids: flavonoid conversions by cell-free protein extracts of Centaurea maculosa (spotted knapweed) roots.
Topics: Catechin; Centaurea; Flavonoids; Flavonols; Kaempferols; Plant Extracts; Plant Proteins; Plant Roots; Plants; Quercetin; Structure-Activity Relationship | 2003 |
New bioactive polyphenols from Theobroma grandiflorum ("cupuaçu").
Topics: Antineoplastic Agents, Phytogenic; Antioxidants; Biphenyl Compounds; Catechin; Colonic Neoplasms; Drug Screening Assays, Antitumor; Flavonoids; French Guiana; Glycosides; Humans; Inhibitory Concentration 50; Malvaceae; Molecular Structure; Picrates; Seeds; Tumor Cells, Cultured | 2003 |
Expanding the ChemGPS chemical space with natural products.
Topics: Biological Products; Combinatorial Chemistry Techniques; Computer Graphics; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Cyclooxygenase Inhibitors; Drug Evaluation, Preclinical; Molecular Structure; Prostaglandin-Endoperoxide Synthases; Structure-Activity Relationship | 2005 |
Inhibition of Plasmodium falciparum fatty acid biosynthesis: evaluation of FabG, FabZ, and FabI as drug targets for flavonoids.
Topics: 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase; Alcohol Oxidoreductases; Animals; Antimalarials; Catechin; Cells, Cultured; Chloroquine; Drug Resistance; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH); Fatty Acids; Flavones; Flavonoids; Humans; Hydro-Lyases; Kinetics; Luteolin; Phenols; Plasmodium falciparum; Polyphenols; Structure-Activity Relationship | 2006 |
Cytotoxic triterpenoids from the leaves of Microtropis fokienensis.
Topics: Antineoplastic Agents, Phytogenic; Celastraceae; Cell Line, Tumor; Drug Screening Assays, Antitumor; Humans; Molecular Structure; Plant Leaves; Plants, Medicinal; Taiwan; Triterpenes | 2006 |
QSAR study of antioxidant activity of wine polyphenols.
Topics: Antioxidants; Flavonoids; Lipid Peroxidation; Molecular Conformation; Phenols; Polyphenols; Quantitative Structure-Activity Relationship; Regression Analysis; Wine | 2009 |
Flavonoids for controlling starch digestion: structural requirements for inhibiting human alpha-amylase.
Topics: alpha-Amylases; Catalytic Domain; Digestion; Flavones; Flavonols; Humans; Hydrogen Bonding; Ligands; Models, Molecular; Protein Conformation; Saliva; Starch; Structure-Activity Relationship | 2008 |
A chemical screening approach reveals that indole fluorescence is quenched by pre-fibrillar but not fibrillar amyloid-beta.
Topics: Amyloid beta-Peptides; Benzothiazoles; Coloring Agents; Congo Red; Fluorescent Dyes; Indoles; Spectrometry, Fluorescence; Thiazoles | 2009 |
Carboxymethylated-kappa-casein: a convenient tool for the identification of polyphenolic inhibitors of amyloid fibril formation.
Topics: Alzheimer Disease; Amyloid; Amyloid beta-Peptides; Animals; Caseins; Flavonoids; Humans; Methylation; Milk; Structure-Activity Relationship | 2010 |
Reliability of bond dissociation enthalpy calculated by the PM6 method and experimental TEAC values in antiradical QSAR of flavonoids.
Topics: Flavonoids; Free Radical Scavengers; Models, Biological; Quantitative Structure-Activity Relationship; Quantum Theory; Software; Thermodynamics | 2010 |
Ixorapeptide I and ixorapeptide II, bioactive peptides isolated from Ixora coccinea.
Topics: Cell Line, Tumor; Humans; Kaempferols; Luteolin; Magnetic Resonance Spectroscopy; Molecular Conformation; Pancreatic Elastase; Peptides; Platelet Aggregation Inhibitors; Rubiaceae; Structure-Activity Relationship; Superoxides | 2010 |
Biological evaluation and structural determinants of p38α mitogen-activated-protein kinase and c-Jun-N-terminal kinase 3 inhibition by flavonoids.
Topics: Animals; Flavonoids; Humans; Mitogen-Activated Protein Kinase 10; Mitogen-Activated Protein Kinase 14; Models, Molecular; Protein Kinase Inhibitors; Structure-Activity Relationship | 2010 |
Structural requirements of flavonoids for the adipogenesis of 3T3-L1 cells.
Topics: 3T3-L1 Cells; Adipogenesis; Animals; CCAAT-Enhancer-Binding Protein-alpha; CCAAT-Enhancer-Binding Protein-beta; CCAAT-Enhancer-Binding Protein-delta; Deoxyglucose; Fatty Acid-Binding Proteins; Flavonoids; Glucose Transporter Type 4; Mice; PPAR gamma; Structure-Activity Relationship | 2011 |
Comparative study on antioxidant capacity of flavonoids and their inhibitory effects on oleic acid-induced hepatic steatosis in vitro.
Topics: Antioxidants; Cell Line; Fatty Liver; Flavonoids; Humans; In Vitro Techniques; Oleic Acid; Reactive Oxygen Species; Triglycerides | 2011 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
Phenolics and their antifungal role in grapevine wood decay: focus on the Botryosphaeriaceae family.
Topics: Antifungal Agents; Ascomycota; Benzofurans; Host-Pathogen Interactions; Inhibitory Concentration 50; Phenols; Plant Diseases; Plant Stems; Stilbenes; Vitis; Wine; Wood | 2012 |
Isolation of arginase inhibitors from the bioactivity-guided fractionation of Byrsonima coccolobifolia leaves and stems.
Topics: Arginase; Brazil; Flavonoids; Inhibitory Concentration 50; Leishmania; Malpighiaceae; Molecular Structure; Plant Leaves; Plant Stems; Structure-Activity Relationship | 2014 |
Phytochemical analysis and antileukemic activity of polyphenolic constituents of Toona sinensis.
Topics: Antineoplastic Agents, Phytogenic; Apoptosis; Cell Proliferation; Cell Survival; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; HL-60 Cells; Humans; Leukemia; Meliaceae; Molecular Conformation; Phytochemicals; Phytotherapy; Plant Extracts; Plant Leaves; Structure-Activity Relationship; Wood | 2014 |
Defining Key Structural Determinants for the Pro-osteogenic Activity of Flavonoids.
Topics: Cell Differentiation; Flavonoids; Humans; Mesenchymal Stem Cells; Molecular Structure; Osteogenesis; Signal Transduction; Structure-Activity Relationship | 2015 |
Profiling of Flavonol Derivatives for the Development of Antitrypanosomatidic Drugs.
Topics: Animals; Biological Products; Cell Line; Dose-Response Relationship, Drug; Flavonols; Humans; Macrophages; Mice; Mice, Inbred BALB C; Models, Molecular; Molecular Structure; Parasitic Sensitivity Tests; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma brucei brucei | 2016 |
Unraveling the anti-influenza effect of flavonoids: Experimental validation of luteolin and its congeners as potent influenza endonuclease inhibitors.
Topics: Antiviral Agents; Crystallography, X-Ray; Drug Evaluation, Preclinical; Endonucleases; Enzyme Assays; Enzyme Inhibitors; Flavonoids; Influenza A virus; Microbial Sensitivity Tests; Molecular Structure; Protein Binding; Protein Domains; RNA-Dependent RNA Polymerase; Structure-Activity Relationship; Viral Proteins | 2020 |