epicatechin has been researched along with (-)-catechin-3-O-gallate in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (60.00) | 29.6817 |
2010's | 1 (20.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
Authors | Studies |
---|---|
Brun, R; Lack, G; Perozzo, R; Rüedi, P; Scapozza, L; Tasdemir, D | 1 |
Katavic, PL; Lamb, K; Navarro, H; Prisinzano, TE | 1 |
Cho, D; Cho, SY; Ham, M; Kim, JB; Lee, TR; Park, J; Shin, DW; Shin, ES; Shin, JM | 1 |
Oliveri, V | 1 |
Arora, S; Chaturvedi, A; Heuser, M; Joshi, G; Kumar, R; Patil, S | 1 |
1 review(s) available for epicatechin and (-)-catechin-3-O-gallate
Article | Year |
---|---|
Toward the discovery and development of effective modulators of α-synuclein amyloid aggregation.
Topics: alpha-Synuclein; Amyloidogenic Proteins; Drug Discovery; Humans; Protein Aggregation, Pathological; Structure-Activity Relationship | 2019 |
4 other study(ies) available for epicatechin and (-)-catechin-3-O-gallate
Article | Year |
---|---|
Inhibition of Plasmodium falciparum fatty acid biosynthesis: evaluation of FabG, FabZ, and FabI as drug targets for flavonoids.
Topics: 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase; Alcohol Oxidoreductases; Animals; Antimalarials; Catechin; Cells, Cultured; Chloroquine; Drug Resistance; Enoyl-(Acyl-Carrier-Protein) Reductase (NADH); Fatty Acids; Flavones; Flavonoids; Humans; Hydro-Lyases; Kinetics; Luteolin; Phenols; Plasmodium falciparum; Polyphenols; Structure-Activity Relationship | 2006 |
Flavonoids as opioid receptor ligands: identification and preliminary structure-activity relationships.
Topics: Flavonoids; Humans; Hypericum; Ligands; Narcotic Antagonists; Plants, Medicinal; Receptors, Opioid; Receptors, Opioid, kappa; Structure-Activity Relationship | 2007 |
Catechin gallates are NADP+-competitive inhibitors of glucose-6-phosphate dehydrogenase and other enzymes that employ NADP+ as a coenzyme.
Topics: 3T3-L1 Cells; Adipocytes; Animals; Catechin; Coenzymes; Glucosephosphate Dehydrogenase; Humans; Kinetics; Mice; Molecular Structure; NADP; Structure-Activity Relationship | 2008 |
A Perspective on Medicinal Chemistry Approaches for Targeting Pyruvate Kinase M2.
Topics: Allosteric Regulation; Allosteric Site; Carrier Proteins; Chemistry, Pharmaceutical; Glycolysis; Humans; Membrane Proteins; Protein Kinase Inhibitors; Thyroid Hormone-Binding Proteins; Thyroid Hormones | 2022 |