enkephalin--leucine-2-alanine has been researched along with rottlerin* in 2 studies
2 other study(ies) available for enkephalin--leucine-2-alanine and rottlerin
Article | Year |
---|---|
Delta-opioid receptor activation before ischemia reduces gap junction permeability in ischemic myocardium by PKC-epsilon-mediated phosphorylation of connexin 43.
The aim of this study was to examine the hypothesis that delta-opioid receptor activation before ischemia suppresses gap junction (GJ) permeability by PKC-mediated connexin 43 (Cx43) modulation, which contributes to infarct size limitation afforded by the delta-opioid receptor activation. A delta-opioid receptor agonist, [D-Ala(2),D-Leu(5)]-enkephalin acetate (DADLE, 300 nM), was used in place of preconditioning (PC) ischemia to trigger PC mechanisms in rat hearts. GJ permeability during ischemia, which was assessed by Lucifer yellow, was reduced by DADLE to 47% of the control level, and this effect of DADLE was almost abolished by a PKC-epsilon inhibitor [PKC-epsilon translocation inhibitory peptide (PKC-epsilon-TIP)] but was not affected by a PKC-delta inhibitor (rottlerin). After DADLE infusion, PKC-epsilon, but not PKC-delta, was coimmunoprecipitated with Cx43, and the level of phosphorylation of Cx43 at a PKC-dependent site (Ser(368)) was significantly elevated during ischemia. DADLE reduced infarct size after 35 min of ischemia followed by 2 h of reperfusion by 69%, and PKC-epsilon-TIP and rottlerin eliminated 48% and 63%, respectively, of the infarct size-limiting effect of DADLE. Infusion of a GJ blocker, heptanol, before reperfusion reduced infarct size by 36%, and this protection was not enhanced by preischemic infusion of rottlerin + DADLE, which allows PKC-epsilon activation by DADLE. These results suggest that phosphorylation of Cx43 by PKC-epsilon plays a crucial role in delta-opioid-induced suppression of GJ permeability in ischemic myocardium and that this modulation of the GJ is possibly an adjunct mechanism of infarct size limitation afforded by preischemic delta-opioid receptor activation. Topics: Acetophenones; Animals; Benzopyrans; Cell Membrane Permeability; Connexin 43; Enkephalin, Leucine-2-Alanine; Enzyme Inhibitors; Gap Junctions; Myocardial Ischemia; Phosphorylation; Protein Kinase C-epsilon; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta | 2007 |
Essential activation of PKC-delta in opioid-initiated cardioprotection.
Stimulation of the delta(1)-opioid receptor confers cardioprotection to the ischemic myocardium. We examined the role of protein kinase C (PKC) after delta-opioid receptor stimulation with TAN-67 or D-Ala(2)-D-Leu(5)-enkephalin (DADLE) in a rat model of myocardial infarction induced by a 30-min coronary artery occlusion and 2-h reperfusion. Infarct size (IS) was determined by tetrazolium staining and expressed as a percentage of the area at risk (IS/AAR). Control animals, subjected to ischemia and reperfusion, had an IS/AAR of 59.9 +/- 1.8. DADLE and TAN-67 administered before ischemia significantly reduced IS/AAR (36.9 +/- 3.9 and 36.7 +/- 4.7, respectively). The delta(1)-selective opioid antagonist 7-benzylidenenaltrexone (BNTX) abolished TAN-67-induced cardioprotection (54.4 +/- 1.3). Treatment with the PKC antagonist chelerythrine completely abolished DADLE- (61.8 +/- 3.2) and TAN-67-induced cardioprotection (55.4 +/- 4.0). Similarly, the PKC antagonist GF 109203X completely abolished TAN-67-induced cardioprotection (54.6 +/- 6.6). Immunofluorescent staining with antibodies directed against specific PKC isoforms was performed in myocardial biopsies obtained after 15 min of treatment with saline, chelerythrine, BNTX, or TAN-67 and chelerythrine or BNTX in the presence of TAN-67. TAN-67 induced the translocation of PKC-alpha to the sarcolemma, PKC-beta(1) to the nucleus, PKC-delta to the mitochondria, and PKC-epsilon to the intercalated disk and mitochondria. PKC translocation was abolished by chelerythrine and BNTX in TAN-67-treated rats. To more closely examine the role of these isoforms in cardioprotection, we utilized the PKC-delta selective antagonist rottlerin. Rottlerin abolished opioid-induced cardioprotection (48.9 +/- 4.8) and PKC-delta translocation without affecting the translocation of PKC-alpha, -beta(1), or -epsilon. These results suggest that PKC-delta is a key second messenger in the cardioprotective effects of delta(1)-opioid receptor stimulation in rats. Topics: Acetophenones; Alkaloids; Analgesics; Animals; Benzophenanthridines; Benzopyrans; Benzylidene Compounds; Enkephalin, Leucine-2-Alanine; Enzyme Activation; Enzyme Inhibitors; Heart Rate; Indoles; Ischemic Preconditioning, Myocardial; Isoenzymes; Male; Maleimides; Myocardial Infarction; Myocardial Ischemia; Myocardial Reperfusion Injury; Myocardium; Naltrexone; Narcotic Antagonists; Phenanthridines; Protein Kinase C; Protein Kinase C-delta; Quinolines; Rats; Rats, Wistar; Receptors, Opioid, delta | 2001 |