enkephalin--leucine-2-alanine has been researched along with naltrindole-benzofuran* in 2 studies
2 other study(ies) available for enkephalin--leucine-2-alanine and naltrindole-benzofuran
Article | Year |
---|---|
Evidence for a single functional opioid delta receptor subtype in the mouse isolated vas deferens.
The identification of opioid delta receptor subtypes in mouse brain led to the investigation of the nature of the opioid delta receptors in the mouse isolated vas deferens in vitro. Noncumulative concentration-effect curves were constructed for DPDPE (delta 1 agonist) and [D-Ala2, Glu4]deltorphin (delta 2 agonist) in control tissues, or in tissues which had been incubated with either [D-Ala2, Leu5, Cys6] enkephalin (DALCE) (noncompetitive delta 1 antagonist) or 5'-naltrindole isothiocyanate (5'-NTII) (noncompetitive delta 2 antagonist). Incubation of the tissues with DALCE, under either oxygenated or nonoxygenated conditions, did not alter the concentration-effect curves for either agonist. In contrast, incubation of the tissues with 5'-NTII resulted in a significant rightward displacement of the concentration-effect curves of both DPDPE and [D-Ala2, Glu4] deltorphin. Additionally, naltriben, a selective and competitive delta 2 antagonist, showed no significant difference in its ability to antagonize a fixed, submaximal concentration of either DPDPE or [D-Ala2, Glu4]deltorphin. Furthermore, there was no significant difference in the affinity of naloxone (i.e., pA2) at the receptor(s) acted upon by either DPDPE or [D-Ala2, Glu4]deltorphin. Tolerance to DPDPE or [D-Ala2, Glu4]deltorphin was produced by incubation of the tissues with these agonists; construction of the [D-Ala2, Glu4]deltorphin concentration-effect curve in DPDPE-tolerant tissues demonstrated cross-tolerance between these agonists and, conversely, construction of DPDPE concentration-effect curves in [D-Ala2, Glu4]deltorphin-tolerant tissues revealed cross-tolerance between these agonists.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Animals; Benzylidene Compounds; Drug Tolerance; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine-2-Alanine; Enkephalins; In Vitro Techniques; Isothiocyanates; Male; Mice; Mice, Inbred ICR; Morphinans; Naltrexone; Oligopeptides; Receptors, Opioid, delta; Thiocyanates; Vas Deferens | 1993 |
delta-Opioid receptor binding in mouse brain: evidence for heterogeneous binding sites.
In this study we investigated the characteristics of binding sites with which delta opioid receptor agonists interact in homogenates of mouse brain using Krebs-HEPES medium. [3H][D- Ser2,Leu5,Thr6]enkephalin (DSLET), [3H][D-Ala2,D-Leu5]enkephalin (DADLE) and [3H][D-Pen2,D-Pen5]enkephalin (DPDPE) were used to label delta opioid binding sites. The analyses of the saturation binding data of these ligands (Scatchard plots) gave best fits to single rather than multiple site models. The binding capacity (Bmax) labelled by [3H]DSLET was found to be significantly greater than those of [3H]DADLE and [3H]DPDPE in brains of mice. Naltriben (the benzofuran analogue of naltrindole) was equally effective in competing for [3H]DSLET, [3H]DPDPE and [3H]DADLE binding sites. On the other hand, DADLE was significantly more potent in competing for [3H]DADLE and [3H]DPDPE binding sites than for [3H]DSLET binding sites. Also, DPDPE was more potent in competing for the binding sites of [3H]DADLE and [3H]DPDPE than for those of [3H]DSLET. DSLET was found to be equipotent in competing for [3H]DSLET, [3H]DPDPE and [3H]DADLE binding sites. These results suggest a heterogeneity of delta opioid receptors which may be explained possibly by the existence of delta opioid receptor subtypes. Topics: Animals; Binding, Competitive; Brain Chemistry; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Enkephalin, Leucine-2-Alanine; Enkephalins; Male; Membranes; Mice; Naltrexone; Narcotic Antagonists; Receptors, Opioid, delta | 1992 |