enkephalin--ala(2)-mephe(4)-gly(5)- has been researched along with saclofen* in 3 studies
3 other study(ies) available for enkephalin--ala(2)-mephe(4)-gly(5)- and saclofen
Article | Year |
---|---|
Lack of intersite GABA receptor subtype antagonist effects upon mu opioid receptor agonist-induced feeding elicited from either the ventral tegmental area or nucleus accumbens shell in rats.
Pretreatment with the GABA(A) receptor antagonist, bicuculline or the GABA(B) receptor antagonist, saclofen, into the nucleus accumbens (Nacc) shell, respectively, potentiates and reduces feeding elicited by the mu opioid agonist, [D-Ala(2), Nme(4), Gly-ol(5)]-enkephalin (DAMGO), administered into the same site. DAMGO-induced feeding elicited from the ventral tegmental area (VTA) region is significantly reduced by pretreatment with saclofen into the same site indicating local GABA mediation of opioid-induced feeding in each site. Given the neuroanatomical and functional connections between the two sites, the present study evaluated the dose-dependent actions of bicuculline and saclofen pretreatment in one site upon DAMGO-induced feeding elicited from the second site. Pretreatment of either bicuculline (7.5-75 ng) or saclofen (1.5-10 microg) into the Nacc shell failed to alter the time course or magnitude of DAMGO-induced feeding elicited from the VTA region. DAMGO-induced feeding elicited from the Nacc shell was unaffected by VTA region pretreatment with either bicuculline (7.5-75 ng) or saclofen (1.5-5 microg). A higher (10 microg) saclofen dose prevented significant DAMGO-induced feeding after 1 and 4 h. Thus, although GABA receptor subtype antagonists are capable of differentially modulating DAMGO-induced feeding when both drugs are applied locally in either the VTA region or the Nacc shell, it appears that any effects between the VTA region and the Nacc shell in modulating DAMGO-induced feeding do not depend upon a GABAergic synapse in the other site. Topics: Animals; Baclofen; Bicuculline; Dose-Response Relationship, Drug; Eating; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; GABA Antagonists; GABA-A Receptor Antagonists; GABA-B Receptor Antagonists; Male; Nucleus Accumbens; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu; Tegmentum Mesencephali | 2003 |
gamma-Aminobutyric acid receptor subtype antagonists differentially alter opioid-induced feeding in the shell region of the nucleus accumbens in rats.
Food intake is significantly increased by administration of mu-selective opioid agonists into the nucleus accumbens, particularly its shell region. Pretreatment with either opioid (mu, delta(1), delta(2) or kappa(1)) or dopaminergic (D(1)) receptor antagonists in the nucleus accumbens shell reduce mu opioid agonist-induced feeding. Selective GABA(A) (muscimol) and GABA(B) (baclofen) agonists administered into the nucleus accumbens shell each stimulate feeding which is respectively and selectively blocked by GABA(A) (bicuculline) and GABA(B) (saclofen) antagonists. The present study investigated whether feeding elicited by the mu-selective opioid agonist, [D-Ala(2),NMe(4),Gly-ol(5)]-enkephalin in the nucleus accumbens shell was decreased by intra-accumbens pretreatment with an equimolar dose range of either GABA(A) or GABA(B) antagonists, and further, whether general opioid or selective GABA antagonists decreased feeding elicited by GABA(A) or GABA(B) agonists in the nucleus accumbens shell. Feeding elicited by the mu-selective opioid agonist was dose-dependently increased following intra-accumbens pretreatment with GABA(A) (bicuculline) antagonism; this enhancement was significantly blocked by pretreatment with general or mu-selective opioid antagonists. In contrast, mu opioid agonist-induced feeding elicited from the nucleus accumbens shell was dose-dependently decreased by GABA(B) (saclofen) antagonism. Neither bicuculline nor saclofen in the nucleus accumbens shell altered baseline food intake. Whereas muscimol-induced feeding elicited from the nucleus accumbens shell was reduced by bicuculline and naltrexone, but not saclofen pretreatment, baclofen-induced feeding elicited from the nucleus accumbens shell was reduced by saclofen, but not by bicuculline or naltrexone. These data indicate that GABA(A) and GABA(B) receptor subtype antagonists differentially affect feeding elicited by mu opioid receptor agonists within the nucleus accumbens shell in rats. Topics: Animals; Baclofen; Bicuculline; Eating; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; GABA Agonists; GABA Antagonists; GABA-A Receptor Antagonists; GABA-B Receptor Antagonists; gamma-Aminobutyric Acid; Male; Naltrexone; Narcotic Antagonists; Narcotics; Neurons; Nucleus Accumbens; Rats; Rats, Sprague-Dawley; Receptors, GABA; Receptors, GABA-A; Receptors, GABA-B; Receptors, Opioid | 2001 |
Mu-opioid and GABA(B) receptors modulate different types of Ca2+ currents in rat nodose ganglion neurons.
Whole-cell patch-clamp recordings were obtained from nodose ganglion neurons acutely dissociated from 10-30-day-old rats to characterize the Ca2+ channel types that are modulated by GABA(B) and mu-opioid receptors. Five components of high-threshold current were distinguished on the basis of their sensitivity to blockade by omega-conotoxin GVIA, nifedipine, omega-agatoxin IVA and omega-conotoxin MVIIC. Administration of the mu-opioid agonist H-Tyr-D-Ala-Gly-Phe(N-Me)-Gly-ol (0.3-1 mM) or the GABA(B) agonist baclofen in saturating concentrations suppressed high-threshold Ca2+ currents by 49.9+/-2.4% (n=69) and 18.7+/-2.1% (n=35), respectively. The inhibition by H-Tyr-D-Ala-Gly-Phe(N-Me)-Gly-ol exceeded that by baclofen in virtually all neurons that responded to both agonists (67%), and occlusion experiments revealed that responses to mu-opioid and GABA(B) receptor activation were not linearly additive. In addition, administration of staurosporine, a non-selective inhibitor of protein kinase A and C, did not affect the inhibitory responses to either agonist or prevent the occlusion of baclofen-induced current inhibition by H-Tyr-D-Ala-Gly-Phe(N-Me)-Gly-ol. Blockade of N-type channels by omega-conotoxin GVIA eliminated current suppression by baclofen in all cells tested (n=11). Mu-opioid-induced inhibition in current was abolished by omega-conotoxin GVIA in 12 of 30 neurons tested, but was only partially reduced in the remaining 18 neurons. In the latter cells administration of omega-agatoxin IVA reduced, but did not eliminate the mu-opioid sensitive current component that persisted after blockade of N-type channels. This residual component of mu-opioid-sensitive current was blocked completely by omega-conotoxin MVIIC in nine neurons, whereas responses to H-Tyr-D-Ala-Gly-Phe(N-Me)-Gly-ol were still recorded in the remaining cells after administration of these Ca2+ channel toxins and nifedipine. Dihydropyridine-sensitive (L-type) current was not affected by activation of mu-opioid or GABA(B) receptors in any of the neurons. These data indicate that in nodose ganglion neurons mu-opioid receptors are negatively coupled to N-, P- and Q-type channels as well as to a fourth, unidentified toxin-resistant Ca2+ channel. In contrast, GABA(B) receptors are coupled only to N-type channels. Furthermore, the results do not support a role for either protein kinase C or A in the modulatory pathway(s) coupling mu-opioid and GABA(B) receptors to Ca2+ channels, but rather lend Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Analgesics, Opioid; Animals; Baclofen; Cadmium; Calcium; Calcium Channel Agonists; Calcium Channel Blockers; Calcium Channels; Calcium Channels, L-Type; Calcium Channels, N-Type; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; GABA Agonists; GABA Antagonists; Naloxone; Narcotic Antagonists; Nerve Tissue Proteins; Neurons; Nifedipine; Nodose Ganglion; omega-Agatoxin IVA; omega-Conotoxin GVIA; omega-Conotoxins; Patch-Clamp Techniques; Peptides; Rats; Rats, Sprague-Dawley; Receptors, GABA-B; Receptors, Opioid, mu; Spider Venoms | 1998 |