enkephalin--ala(2)-mephe(4)-gly(5)- and phaclofen

enkephalin--ala(2)-mephe(4)-gly(5)- has been researched along with phaclofen* in 5 studies

Other Studies

5 other study(ies) available for enkephalin--ala(2)-mephe(4)-gly(5)- and phaclofen

ArticleYear
Reversal of morphine analgesic tolerance by ethanol in the mouse.
    The Journal of pharmacology and experimental therapeutics, 2013, Volume: 345, Issue:3

    The chronic use of opioids in humans, accompanied by the development of tolerance, is a dangerous phenomenon in its own right. However, chronic opioid use is often made more dangerous by the coconsumption of other substances. It has been observed that the blood level of opioids in postmortem analyses of addicts, who consumed ethanol along with the opioid, was much less than that observed in individuals who died from opioids alone. This relationship between ethanol and opioids led us to investigate the hypothesis that ethanol alters tolerance to opioids. In the present study, we report that ethanol significantly and dose-dependently reduced the antinociceptive tolerance produced by morphine and the cross-tolerance between [D-Ala2,N-Me-Phe4,Gly5-ol]-enkephalin (DAMGO) and morphine in the mouse tail-flick test. The reversal of morphine tolerance was partially blocked by both the gamma receptor blocker bicuculline and by the γ-aminobutyric acid (GABA)(B) receptor blocker phaclofen and the administration of both inhibitors completely reversed the effects of ethanol on morphine tolerance. Diazepam, like ethanol, decreased morphine tolerance. However, this inhibition was reversed by the GABA(A) antagonist bicuculline but not by the GABA(B) antagonist phaclofen. These findings have important implications for individuals who abuse opioids and ethanol as well as suggest a mechanism to reduce the amount of opioid needed in chronic pain treatment.

    Topics: Analgesics, Opioid; Animals; Baclofen; Bicuculline; Central Nervous System Depressants; Diazepam; Dose-Response Relationship, Drug; Drug Tolerance; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Ethanol; GABA Antagonists; Hypnotics and Sedatives; Immersion; Injections, Intraventricular; Male; Mice; Morphine; Pain Measurement; Receptors, GABA-A; Receptors, GABA-B

2013
Mu opioids enhance mossy fiber synaptic transmission indirectly by reducing GABAB receptor activation.
    Brain research, 1999, Mar-13, Volume: 821, Issue:2

    The cellular mechanisms underlying mu opioid facilitation of mossy fiber (MF) long-term potentiation (LTP) and synaptic transmission were investigated in the rat hippocampal slice. Naloxone (10 microM) significantly inhibited the induction of mossy fiber LTP, an effect attributed by Derrick and Martinez [B.E. Derrick, J.L.J. Martinez, Opioid receptor activation is one factor underlying the frequency dependence of mossy fiber LTP induction, J. Neurosci. 14 (1994) 4359-4367] to antagonism of endogenous opioid peptide action. We found that the inhibitory effects of naloxone were not blocked by bicuculline, suggesting that endogenous opioids did not enhance mossy fiber LTP by depressing GABAA inhibition. [d-Ala2, NMePhe4, Glyol5] enkephalin, DAMGO (300 nM), a mu opioid agonist, mimicked the action of endogenous opioids, enhancing both mossy fiber LTP induction and paired-pulse facilitation. DAMGO potentiation of the paired-pulse facilitation of mossy fiber response was also insensitive to bicuculline but was blocked by the mu selective antagonist CTOP. Further analysis of the cellular mechanism showed that the depletion of internal Ca2+ stores by thapsigargin (1 microM), or inhibition of protein kinases by application of staurosporine (1 microM) did not block the DAMGO facilitation of mossy fiber-CA3 synaptic transmission. However, application of phaclofen (100 microM GABAB receptor antagonist or SCH 50911, a more potent GABAB antagonist significantly inhibited the DAMGO effect (49+/-15%; 51+/-19% inhibition, P<0.05). The data indicate that the DAMGO effect on the mossy fiber pathway is partially mediated by a reduction in GABA activation of GABAB receptors. These findings further suggest that endogenous opioid peptides activate mu opioid receptors to facilitate mossy fiber LTP and synaptic transmission in rat hippocampus partially by GABAB receptor-mediated disinhibitory mechanism.

    Topics: Analgesics, Opioid; Animals; Baclofen; Bicuculline; Electrophysiology; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; GABA Antagonists; Long-Term Potentiation; Male; Membrane Potentials; Mossy Fibers, Hippocampal; Naloxone; Narcotic Antagonists; Organ Culture Techniques; Rats; Rats, Sprague-Dawley; Receptors, GABA-B; Receptors, Opioid, mu; Somatostatin; Synaptic Transmission

1999
Identification of the G-protein-coupled ORL1 receptor in the mouse spinal cord by [35S]-GTPgammaS binding and immunohistochemistry.
    British journal of pharmacology, 1999, Volume: 128, Issue:6

    1 Although the ORL1 receptor is clearly located within the spinal cord, the functional signalling mechanism of the ORL1 receptor in the spinal cord has not been clearly documented. The present study was then to investigate the guanine nucleotide binding protein (G-protein) activation mediated through by the ORL1 receptor in the mouse spinal cord, measuring the modulation of guanosine-5'-o-(3-[35S]-thio) triphosphate ([35S]-GTPgammaS) binding by the putative endogenous ligand nociceptin, also referred as orphanin FQ. We also studied the anatomical distribution of nociceptin-like immunoreactivity and nociceptin-stimulated [35S]-GTPgammaS autoradiography in the spinal cord. 2 Immunohistochemical staining of mouse spinal cord sections revealed a dense plexus of nociceptin-like immunoreactive fibres in the superficial layers of the dorsal horn throughout the entire length of the spinal cord. In addition, networks of fibres were seen projecting from the lateral border of the dorsal horn to the lateral grey matter and around the central canal. 3 In vitro [35S]-GTPgammaS autoradiography showed high levels of nociceptin-stimulated [35S]-GTPgammaS binding in the superficial layers of the mouse dorsal horn and around the central canal, corresponding to the areas where nociceptin-like immunoreactive fibres were concentrated. 4 In [35S]-GTPgammaS membrane assay, nociceptin increased [35S]-GTPgammaS binding of mouse spinal cord membranes in a concentration-dependent and saturable manner, affording maximal stimulation of 64.1+/-2.4%. This effect was markedly inhibited by the specific ORL1 receptor antagonist [Phe1Psi (CH2-NH) Gly2] nociceptin (1 - 13) NH2. None of the mu-, delta-, and kappa-opioid and other G-protein-coupled receptor antagonists had a significant effect on basal or nociceptin-stimulated [35S]-GTPgammaS binding. 5 These findings suggest that nociceptin-containing fibres terminate in the superficial layers of the dorsal horn and the central canal and that nociceptin released in these areas may selectively stimulate the ORL1 receptor to activate G-protein. Furthermore, the unique pattern of G-protein activation in the present study provide additional evidence that nociceptin is distinct from the mu-, delta- or kappa-opioid system.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Atropine; Autoradiography; Baclofen; Binding, Competitive; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Guanosine Diphosphate; Haloperidol; Immunohistochemistry; In Vitro Techniques; Male; Membranes; Mice; Mice, Inbred ICR; Naltrexone; Narcotic Antagonists; Nociceptin; Nociceptin Receptor; Opioid Peptides; Peptide Fragments; Propranolol; Receptors, Opioid; Somatostatin; Spinal Cord; Sulfur Radioisotopes; Yohimbine

1999
Dissociation of mu and delta opioid receptor-mediated reductions in evoked and spontaneous synaptic inhibition in the rat hippocampus in vitro.
    Brain research, 1992, Oct-16, Volume: 593, Issue:2

    Modulation of gamma-aminobutyric acid (GABA)-mediated inhibition, and glutamate-mediated excitation by highly selective mu and delta opioid agonists was studied using intracellular recordings of CA1 pyramidal neuron synaptic responses in superfused hippocampal slices. Equimolar concentrations of the selective mu agonist, [Tyr-(D-Ala)-Gly-(N-Me-Phe)-Gly-ol]-enkephalin (DAGO), or the delta selective agonist, [D-Pen2,D-Pen5]-enkephalin (DPDPE), reversibly increased the amplitudes of excitatory post-synaptic potentials (EPSPs), evoked by Schaffer collateral/commissural stimulation, without altering the input resistance or resting membrane potential of these CA1 pyramidal neurons. The increased EPSP amplitudes resulting from superfusion with the enkephalin analogs were qualitatively similar to those caused by the GABAA receptor antagonist, bicuculline methiodide (BMI). Specific stimulation/recording protocols and micro-lesions of the slices were used to evoke relatively pure forms of recurrent and feed-forward GABA-mediated inhibitory post-synaptic potentials (IPSPs). The mu opioid agonist DAGO reduced both recurrent and feed-forward IPSPs, while the delta agonist DPDPE had no effect upon these responses. To test the hypothesis that the enhancement of pyramidal neuron EPSPs by delta (and mu) opioids was due to the reduction of an inhibitory potential that was coincident with the EPSP, DPDPE or the mu agonist, DAGO, were applied while recording monosynaptic IPSPs following the elimination of EPSPs by the glutamate receptor antagonists, D,L-2-amino-5-phosphonovalerate (APV) and 6,7-dinitroquinoxaline-2,3-dione (DNQX). The mu agonist, DAGO, reversibly reduced these pharmacologically isolated IPSPs, while the delta agonist, DPDPE, had no effect upon these responses. Despite the fact that the delta agonist, DPDPE, had no effect on recurrent, feed-forward or monosynaptic evoked IPSPs, this enkephalin did reversibly reduce the frequency of spontaneously occurring IPSPs, measured using whole-cell recordings with pipettes containing 65 mM KCl. The mu agonist, DAGO, and the GABAA antagonist, BMI, similarly reduced spontaneous IPSP rates. We conclude from these data that mu and delta opioid receptor activation increases EPSPs via the reduction of a form of GABAergic inhibition that is difficult to characterize, and which may be distinct from conventional feed-forward and recurrent inhibition. Furthermore, delta opioids seem to reduce this form of GABAergic inhibition sel

    Topics: 2-Amino-5-phosphonovalerate; Analgesics; Animals; Axons; Baclofen; Bicuculline; Electric Stimulation; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Evoked Potentials; gamma-Aminobutyric Acid; Glutamates; Glutamic Acid; Hippocampus; In Vitro Techniques; Male; Neurons; Pyramidal Tracts; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, mu; Synapses

1992
GABAA and GABAB antagonists prevent the opioid inhibition of endogenous acetylcholine release evoked by glutamate from rat neostriatal slices.
    Neuroscience letters, 1990, Dec-11, Volume: 120, Issue:2

    We have examined the role of the GABAergic system in the opioid inhibition of endogenous acetylcholine (ACh) release from rat neostriatal slices by blocking either gamma-aminobutyric acid-A (GABAA) or GABAB receptors. GABAergic antagonists (bicuculline or phaclofen) completely blocked mu- (morphine or DAGO) and delta-opioid (DPDPE) inhibition of glutamate-evoked endogenous ACh release in a concentration-dependent manner. However, GABA antagonists were ineffective in blocking the opioid inhibition of potassium-evoked endogenous ACh release. These findings point to the important role of the GABAergic system in the regulation of mu- and delta-opioid inhibition of cholinergic neurons stimulated by glutamate.

    Topics: Acetylcholine; Animals; Baclofen; Bicuculline; Corpus Striatum; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; GABA Antagonists; gamma-Aminobutyric Acid; Glutamates; Glutamic Acid; In Vitro Techniques; Male; Morphine; Narcotics; Rats; Rats, Inbred Strains; Receptors, GABA-A

1990