enkephalin--ala(2)-mephe(4)-gly(5)- has been researched along with naloxonazine* in 31 studies
31 other study(ies) available for enkephalin--ala(2)-mephe(4)-gly(5)- and naloxonazine
Article | Year |
---|---|
Possible involvement of dynorphin A release via mu1-opioid receptor on supraspinal antinociception of endomorphin-2.
It has been demonstrated that the antinociception induced by i.t. or i.c.v. administration of endomorphins is mediated through mu-opioid receptors. Moreover, though endomorphins do not have appreciable affinity for kappa-opioid receptors, pretreatment with the kappa-opioid receptor antagonist nor-binaltorphimine markedly blocks the antinociception induced by i.c.v.- or i.t.-injected endomorphin-2, but not endomorphin-1. These evidences propose the hypothesis that endomorphin-2 may initially stimulate the mu-opioid receptors, which subsequently induces the release of dynorphins acting on kappa-opioid receptors to produce antinociception. The present study was performed to determine whether the release of dynorphins by i.c.v.-administered endomorphin-2 is mediated through mu-opioid receptors for producing antinociception. Intracerebroventricular pretreatment with an antiserum against dynorphin A, but not dynorphin B or alpha-neo-endorphin, and s.c. pretreatment with kappa-opioid receptor antagonist nor-binaltorphimine dose-dependently attenuated the antinociception induced by i.c.v.-administered endomorphin-2, but not endomorphin-1 and DAMGO. The attenuation of endomorphin-2-induced antinociception by pretreatment with antiserum against dynorphin A or nor-binaltorphimine was dose-dependently eliminated by additional s.c. pretreatment with a selective mu-opioid receptor antagonist beta-funaltrexamine or a selective mu1-opioid receptor antagonist naloxonazine at ultra low doses, which are inactive against micro-opioid receptor agonists in antinociception, suggesting that endomorphin-2 stimulates distinct subclass of micro1-opioid receptor that induces the release of dynorphin A acting on kappa-opioid receptors in the brain. It concludes that the antinociception induced by supraspinally administered endomorphin-2 is in part mediated through the release of endogenous kappa-opioid peptide dynorphin A, which is caused by the stimulation of distinct subclass of micro1-opioid receptor. Topics: Analgesics; Animals; Dynorphins; Endorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Immune Sera; Injections, Intraventricular; Male; Mice; Naloxone; Naltrexone; Oligopeptides; Protein Precursors; Receptors, Opioid, kappa; Receptors, Opioid, mu | 2008 |
A naloxonazine sensitive (mu1 receptor) mechanism in the parabrachial nucleus modulates eating.
The parabrachial nucleus (PBN) is an area of the brain stem that controls eating and contains endogenous opioids and their receptors. Previously, we demonstrated that acute activation of mu opioid receptors (MOPR) in the lateral PBN increased food consumption. MOPRs have been divided operationally into mu(1) and mu(2) receptor subtypes on the basis of the ability of naloxonazine (Nlxz) to block the former but not the latter. We used autoradiography to measure whether Nlxz blocks stimulation by the mu(1)/mu(2) agonist DAMGO (D-Ala2, N-Me-Phe4, Gly5-ol-enkephalin) of the incorporation of [(35)S]-guanosine 5'(gamma-thio)triphosphate ([(35)S]-GTPgammaS) into sections of the PBN. In vitro, Nlxz dose dependently inhibited receptor coupling in all areas of the PBN. The 1 muM concentration of Nlxz reduced stimulation by 93.1+/-5% in the lateral inferior PBN (LPBNi) and by 90.5+/-4% in the medial parabrachial subregion (MPBN). Administration of Nlxz directly into the LPBNi decreased both food intake and agonist stimulated coupling, ex vivo, for the 24-h period after infusion. Infusion of Nlxz into the intended area reduced food intake by 42.3% below baseline values. Nlxz infusion prevented DAMGO stimulation of G-protein coupling in LPBNi and markedly reduced this stimulation in the MPBN. The incomplete inhibition of DAMGO-stimulated coupling in the MPBN is most likely due to the limited diffusion of Nlxz from the site of infusion (LPBNi) into this brain region. In conclusion, this study demonstrates that the mu(1) opioid receptor subtype is present in the parabrachial nucleus of the pons and that these receptors serve to modulate feeding in rats. Topics: Analgesics, Opioid; Animals; Autoradiography; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Feeding Behavior; Guanosine 5'-O-(3-Thiotriphosphate); Male; Naloxone; Pons; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu | 2008 |
A Tyr-W-MIF-1 analog containing D-Pro2 discriminates among antinociception in mice mediated by different classes of mu-opioid receptors.
The antagonism by Tyr-D-Pro-Trp-Gly-NH2 (D-Pro2-Tyr-W-MIF-1), a Tyr-Pro-Trp-Gly-NH2 (Tyr-W-MIF-1) analog, of the antinociception induced by the mu-opioid receptor agonists Tyr-W-MIF-1, [D-Ala2,NMePhe4,Gly(ol)5]-enkephalin (DAMGO), Tyr-Pro-Trp-Phe-NH2 (endomorphin-1), and Tyr-Pro-Phe-Phe-NH2 (endomorphin-2) was studied with the mouse tail-flick test. D-Pro2-Tyr-W-MIF-1 (0.5-3 nmol) given intracerebroventricularly (i.c.v.) had no effect on the thermal nociceptive threshold. High doses of D-Pro2-Tyr-W-MIF-1 (4-16 nmol) administered i.c.v. produced antinociception with a low intrinsic activity of about 30% of the maximal possible effect. D-Pro2-Tyr-W-MIF-1 (0.25-2 nmol) co-administered i.c.v. showed a dose-dependent attenuation of the antinociception induced by Tyr-W-MIF-1 or DAMGO without affecting endomorphin-2-induced antinociception. A 0.5 nmol dose of D-Pro2-Tyr-W-MIF-1 significantly attenuated Tyr-W-MIF-1-induced antinociception but not DAMGO- or endomorphin-1-induced antinociception. The highest dose (2 nmol) of D-Pro2-Tyr-W-MIF-1 almost completely attenuated Tyr-W-MIF-1-induced antinociception. However, that dose of D-Pro2-Tyr-W-MIF-1 significantly but not completely attenuated endomorphin-1 or DAMGO-induced antinociception, whereas the antinociception induced by endomorphin-2 was still not affected by D-Pro2-Tyr-W-MIF-1. Pretreatment i.c.v. with various doses of naloxonazine, a mu1-opioid receptor antagonist, attenuated the antinociception induced by Tyr-W-MIF-1, endomorphin-1, endomorphin-2, or DAMGO. Judging from the ID50 values for naloxonazine against the antinociception induced by the mu-opioid receptor agonists, the antinociceptive effect of Tyr-W-MIF-1 is extremely less sensitive to naloxonazine than that of endomorphin-1 or DAMGO. In contrast, endomorphin-2-induced antinociception is extremely sensitive to naloxonazine. The present results clearly suggest that D-Pro2-Tyr-W-MIF-1 is a selective antagonist for the mu2-opioid receptor in the mouse brain. D-Pro2-Tyr-W-MIF-1 may also discriminate between Tyr-W-MIF-1-induced antinociception and the antinociception induced by endomorphin-1 or DAMGO, which both show a preference for the mu2-opioid receptor in the brain. Topics: Analgesics, Opioid; Animals; Brain; Disease Models, Animal; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Hot Temperature; Injections, Intraventricular; Male; Mice; MSH Release-Inhibiting Hormone; Naloxone; Narcotic Antagonists; Oligopeptides; Pain; Pain Measurement; Pain Threshold; Reaction Time; Receptors, Opioid, mu; Somatostatin; Time Factors | 2007 |
A Tyr-W-MIF-1 analog containing D-Pro2 acts as a selective mu2-opioid receptor antagonist in the mouse.
The antagonistic properties of Tyr-d-Pro-Trp-Gly-NH(2) (d-Pro(2)-Tyr-W-MIF-1), a Tyr-Pro-Trp-Gly-NH(2)(Tyr-W-MIF-1) analog, on the antinociception induced by the mu-opioid receptor agonists Tyr-W-MIF-1, [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO), Tyr-Pro-Trp-Phe-NH(2) (endomorphin-1), and Tyr-Pro-Phe-Phe-NH(2) (endomorphin-2) were studied in the mouse paw-withdrawal test. d-Pro(2)-Tyr-W-MIF-1 injected intrathecally (i.t.) had no apparent effect on the thermal nociceptive threshold. d-Pro(2)-Tyr-W-MIF-1 (0.1-0.4 nmol) coadministered i.t. showed a dose-dependent attenuation of the antinociception induced by Tyr-W-MIF-1 without affecting endomorphin- or DAMGO-induced antinociception. However, higher doses of d-Pro(2)-Tyr-W-MIF-1 (0.8-1.2 nmol) significantly attenuated endomorphin-1- or DAMGO-induced antinociception, whereas the antinociception induced by endomorphin-2 was still not affected by d-Pro(2)-Tyr-W-MIF-1. Pretreatment i.t. with various doses of naloxonazine, a mu(1)-opioid receptor antagonist, attenuated the antinociception induced by Tyr-W-MIF-1, endomorphin-1, endomorphin-2, or DAMGO. Judging from the ID(50) values for naloxonazine against the antinociception induced by the mu-opioid receptor agonists, the antinociceptive effect of Tyr-W-MIF-1 is extremely less sensitive to naloxonazine than those of endomorphin-1 or DAMGO. In contrast, endomorphin-2-induced antinociception is extremely sensitive to naloxonazine. The present results clearly suggest that d-Pro(2)-Tyr-W-MIF-1 is the selective antagonist to be identified for the mu(2)-opioid receptor in the mouse spinal cord. d-Pro(2)-Tyr-W-MIF-1 may also discriminate between Tyr-W-MIF-1-induced antinociception and the antinociception induced by endomorphin-1 or DAMGO, all of which show a preference for the mu(2)-opioid receptor in the spinal cord. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Opioid; Animals; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Male; Mice; MSH Release-Inhibiting Hormone; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides; Receptors, Opioid, mu | 2005 |
Differential antinociceptive effects induced by intrathecally administered endomorphin-1 and endomorphin-2 in the mouse.
Two highly selective mu-opioid receptor agonists, endomorphin-1 and endomorphin-2, have been identified and postulated to be endogenous ligands for mu-opioid receptors. Intrathecal (i.t.) administration of endomorphin-1 and endomorphin-2 at doses from 0.039 to 5 nmol dose-dependently produced antinociception with the paw-withdrawal test. The paw-withdrawal inhibition rapidly reached its peak at 1 min, rapidly declined and returned to the pre-injection levels in 20 min. The inhibition of the paw-withdrawal responses to endomorphin-1 and endomorphin-2 at a dose of 5 nmol observed at 1 and 5 min after injection was blocked by pretreatment with a non-selective opioid receptor antagonist naloxone (1 mg/kg, s.c.). The antinociceptive effect of endomorphin-2 was more sensitive to the mu (1)-opioid receptor antagonist, naloxonazine than that of endomorphin-1. The endomorphin-2-induced paw-withdrawal inhibition at both 1 and 5 min after injection was blocked by pretreatment with kappa-opioid receptor antagonist nor-binaltorphimine (10 mg/kg, s.c.) or the delta(2)-opioid receptor antagonist naltriben (0.6 mg/kg, s.c.) but not the delta(1)-opioid receptor antagonist 7-benzylidine naltrexone (BNTX) (0.6 mg/kg s.c.). In contrast, the paw-withdrawal inhibition induced by endomorphin-1 observed at both 1 and 5 min after injection was not blocked by naloxonazine (35 mg/kg, s.c.), nor-binaltorphimine (10 mg/kg, s.c.), naltriben (0.6 mg/kg, s.c.) or BNTX (0.6 mg/kg s.c.). The endomorphin-2-induced paw-withdrawal inhibition was blocked by the pretreatment with an antiserum against dynorphin A-(1-17) or [Met(5)]enkephalin, but not by antiserum against dynorphin B-(1-13). Pretreatment with these antisera did not affect the endomorphin-1-induced paw-withdrawal inhibition. Our results indicate that endomorphin-2 given i.t. produces its antinociceptive effects via the stimulation of mu (1)-opioid receptors (naloxonazine-sensitive site) in the spinal cord. The antinociception induced by endomophin-2 contains additional components, which are mediated by the release of dynorphin A-(1-17) and [Met(5)]enkephalin which subsequently act on kappa-opioid receptors and delta(2)-opioid receptors to produce antinociception. Topics: Analgesics; Animals; Benzylidene Compounds; Dose-Response Relationship, Drug; Dynorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine; Enkephalin, Methionine; Immune Sera; Injections, Spinal; Injections, Subcutaneous; Male; Mice; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides; Pain; Pain Measurement; Pain Threshold; Peptide Fragments; Time Factors | 2001 |
Inhibitory effect of intracerebroventricularly-administered [D-Arg(2), beta-Ala(4)]-dermorphin (1-4) on gastrointestinal transit.
The inhibitory effect of intracerebroventricularly-administered [D-Arg(2), beta-Ala(4)]-dermorphin (1-4) (TAPA), a highly selective mu(1)-opioid receptor agonist, on mouse gastrointestinal transit was compared with that of morphine and [D-Ala(2), N-methyl-Phe(4), Gly(5)-ol]-enkephalin (DAMGO). When administered intracerebroventricularly 5 min before the oral injection of charcoal meal, TAPA (10-100 pmol), morphine (0.25-4 nmol), and DAMGO (20-80 pmol) dose-dependently inhibited gastrointestinal transit of charcoal. The inhibitory effect of each mu-opioid receptor agonist was completely antagonized by naloxone, a nonselective opioid receptor antagonist. The inhibitory effects of morphine and DAMGO were significantly antagonized by both beta-funaltrexamine, a selective mu-opioid receptor antagonist, and naloxonazine, a selective mu(1)-opioid receptor antagonist. In contrast, the inhibitory effect of TAPA was not affected at all by beta-funaltrexamine, naloxonazine, nor-binaltorphimine (a selective kappa-opioid receptor antagonist), or naltrindole (a selective delta-opioid receptor antagonist). These results suggest that the inhibitory effect of TAPA on gastrointestinal transit may be mediated through an opioid receptor mechanism different from that of morphine and DAMGO. Topics: Analgesics; Animals; Charcoal; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Female; Gastrointestinal Transit; Injections, Intraventricular; Mice; Mice, Inbred Strains; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides | 2000 |
Selective antagonism by naloxonazine of antinociception by Tyr-D-Arg-Phe-beta-Ala, a novel dermorphin analogue with high affinity at mu-opioid receptors.
To examine the role of mu-opioid receptor subtypes, we assessed the antinociceptive effect of H-Tyr-D-Arg-Phe-beta-Ala-OH (TAPA), an analogue of dermorphin N-terminal peptide in mice, using the tail-flick test. Intracerebroventricularly (i.c.v.) or intrathecally (i.t.) injected TAPA produced potent antinociception with tail-flick as a thermal noxious stimulus. The selective mu(1)-opioid receptor antagonist, naloxonazine (35 mg/kg, s.c.), or the selective mu-opioid receptor antagonist, beta-funaltrexamine, 24 h before testing antagonized the antinociceptive effect of i.t. or i.c.v. TAPA on the response to noxious stimuli. Pretreatment with beta-funaltrexamine completely antagonized the antinociception by both i.c.v. and i.t. administered TAPA and [D-Ala(2), Me-Phe(4), Gly(ol)(5)]enkephalin (DAMGO). Especially in the tail-flick test, pretreatment with naloxonazine produced a marked rightward displacement of the i.t. TAPA dose-response curve for antinociception. Though DAMGO is a highly selective mu-opioid receptor agonist, pretreatment with naloxonazine partially blocked the antinociceptive response to DAMGO after i.c.v., but not after i. t. injection. These results indicate that TAPA can act as a highly selective mu(1)-opioid receptor agonist (notable naloxonazine-sensitive receptor agonist) at not only the supraspinal level, but also the spinal level. These data also reveal different antinociceptive mechanisms for DAMGO and for TAPA. Topics: Analgesics; Analgesics, Opioid; Animals; Drug Antagonism; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Injections, Intraventricular; Male; Mice; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides; Opioid Peptides; Pain Measurement; Receptors, Opioid, mu; Time Factors | 2000 |
Selectivity of mu-opioid receptor determined by interfacial residues near third extracellular loop.
We hypothesized that the selectivity profile of the rat mu-opioid receptor for opioid receptor-selective ligands is determined by the nature of the amino acid residues at highly divergent sites in the ligand-binding pocket. To determine which characteristics of these residues contribute to opioid receptor ligand selectivity, we made various mutant receptors that replaced the Lys(303) and Trp(318) residues near the extracellular interface of transmembrane domains VI and VII, respectively. Ligand binding determinations using transiently transfected monkey kidney epithelial (COS-1) cells show that Lys(303) mutations cause little change in the receptor binding profile, whereas the Trp(318) mutant receptors have considerably lower affinity for micro-opioid receptor-selective ligands and greatly increased affinity for delta-opioid receptor-selective ligands. The nature of these mutations show that this effect is not due to sterics or charge alone. [35S]guanosine-5'-O-(3-thio)-triphosphate ([35S]GTPgammaS) activity assays show that these residues may influence functional, as well as binding selection. We conclude that a primary role for Trp(318) is to form a basis for ligand selectivity. Topics: Amino Acid Substitution; Animals; Benzamides; Benzomorphans; Binding Sites; Binding, Competitive; COS Cells; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Fentanyl; Guanosine 5'-O-(3-Thiotriphosphate); Ligands; Morphine; Mutation; Naloxone; Naltrexone; Narcotic Antagonists; Peptides; Piperazines; Protein Conformation; Radioligand Assay; Rats; Receptors, Opioid, mu; Signal Transduction; Sulfur Radioisotopes | 2000 |
Differential antagonism of endomorphin-1 and endomorphin-2 spinal antinociception by naloxonazine and 3-methoxynaltrexone.
To determine the role of spinal mu-opioid receptor subtypes in antinociception induced by intrathecal (i.t.) injection of endomorphin-1 and -2, we assessed the effects of beta-funaltrexamine (a selective mu-opioid receptor antagonist) naloxonazine (a selective antagonist at the mu(1)-opioid receptor) and a novel receptor antagonist (3-methoxynaltrexone) using the paw-withdrawal test. Antinociception of i.t. endomorphins and [D-Ala(2), MePhe(4), Gly(ol)(5)]enkephalin (DAMGO) was completely reversed by pretreatment with beta-funaltrexamine (40 mg/kg s.c.). Pretreatment with a variety of doses of i.t. or s.c. naloxonazine 24 h before testing antagonized the antinociception of endomorphin-1, -2 and DAMGO. Judging from the ID(50) values of naloxonazine, the antinociceptive effect of endomorphin-2 was more sensitive to naloxonazine than that of endomorphin-1 or DAMGO. The selective morphine-6beta-glucuronide antagonist, 3-methoxynaltrexone, which blocked endomorphin-2-induced antinociception at each dose (0.25 mg/kg s.c. or 2.5 ng i.t.) that was inactive against DAMGO, did not affect endomorphin-1-induced antinociception but shifted the dose-response curve of endomorphin-2 3-fold to the right. These findings may be interpreted as indicative of the existence of a novel mu-opioid receptor subtype in spinal sites, where antinociception of morphine-6beta-glucuronide and endomorphin-2 are antagonized by 3-methoxynaltrexone. The present results suggest that endomorphin-1 and endomorphin-2 may produce antinociception through different subtypes of mu-opioid receptor. Topics: Analgesics, Opioid; Animals; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Heroin; Injections, Spinal; Male; Mice; Naloxone; Naltrexone; Oligopeptides; Pain Measurement; Receptors, Opioid, mu | 2000 |
Differential involvement of mu-opioid receptor subtypes in endomorphin-1- and -2-induced antinociception.
We investigated the role of mu-opioid receptor subtypes in both endomorphin-1 and endomorphin-2 induced antinociception in mice using supraspinally mediated behavior. With tail pressure as a mechanical noxious stimulus, both intracerebroventricularly (i.c.v.) and intrathecally (i.t.) injected-endomorphins produced potent and significant antinociceptive activity. Antinociception induced by i.t. and i.c.v. injection of endomorphin-1 was not reversed by pretreatment with a selective mu1-opioid receptor antagonist, naloxonazine (35 mg/kg, s.c.). By contrast, antinociception induced by i.t. and i.c.v. endomorphin-2 was significantly decreased by mu1-opioid receptor antagonist. Antinociception of both i.t. and i.c.v. endomorphin-1 and -2 was completely reversed by pretreatment with beta-funaltrexamine (40 mg/kg, s.c.). The results indicate that endomorphins may produce antinociception through the distinct mu1 and mu2 subtypes of mu-opioid receptor. Topics: Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Injections, Intraventricular; Injections, Spinal; Male; Mice; Naloxone; Naltrexone; Narcotic Antagonists; Nociceptors; Oligopeptides; Pain; Receptors, Opioid, mu; Time Factors | 1999 |
Systemic morphine-induced Fos protein in the rat striatum and nucleus accumbens is regulated by mu opioid receptors in the substantia nigra and ventral tegmental area.
To characterize how systemic morphine induces Fos protein in dorsomedial striatum and nucleus accumbens (NAc), we examined the role of receptors in striatum, substantia nigra (SN), and ventral tegmental area (VTA). Morphine injected into medial SN or into VTA of awake rats induced Fos in neurons in ipsilateral dorsomedial striatum and NAc. Morphine injected into lateral SN induced Fos in dorsolateral striatum and globus pallidus. The morphine infusions produced contralateral turning that was most prominent after lateral SN injections. Intranigral injections of [D-Ala2, N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO), a mu opioid receptor agonist, and of bicuculline, a GABAA receptor antagonist, induced Fos in ipsilateral striatum. Fos induction in dorsomedial striatum produced by systemic administration of morphine was blocked by (1) SN and VTA injections of the mu1 opioid antagonist naloxonazine and (2) striatal injections of either MK 801, an NMDA glutamate receptor antagonist, or SCH 23390, a D1 dopamine receptor antagonist. Fos induction in dorsomedial striatum and NAc after systemic administration of morphine seems to be mediated by dopamine neurons in medial SN and VTA that project to medial striatum and NAc, respectively. Systemic morphine is proposed to act on mu opioid receptors located on GABAergic interneurons in medial SN and VTA. Inhibition of these GABA interneurons disinhibits medial SN and VTA dopamine neurons, producing dopamine release in medial striatum and NAc. This activates D1 dopamine receptors and coupled with the coactivation of NMDA receptors possibly from cortical glutamate input induces Fos in striatal and NAc neurons. The modulation of target gene expression by Fos could influence addictive behavioral responses to opiates. Topics: Afferent Pathways; Analgesics, Opioid; Animals; Behavior, Animal; Benzazepines; Bicuculline; Corpus Striatum; Dizocilpine Maleate; Dopamine Antagonists; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Excitatory Amino Acid Antagonists; Female; GABA Antagonists; Gene Expression Regulation; Genes, fos; Genes, Immediate-Early; Injections; Injections, Intraperitoneal; Interneurons; Morphine; Motor Activity; Naloxone; Nerve Tissue Proteins; Nucleus Accumbens; Proto-Oncogene Proteins c-fos; Rats; Rats, Sprague-Dawley; Receptors, Dopamine D1; Receptors, GABA-A; Receptors, N-Methyl-D-Aspartate; Receptors, Opioid, mu; Substantia Nigra; Tegmentum Mesencephali | 1997 |
In vivo injection of antibodies directed against the cloned mu opioid receptor blocked supraspinal analgesia induced by mu-agonists in mice.
The intracerebroventricular (i.c.v.) injection to mice of a polyclonal antibody raised against the peptide sequence 208-216 (TKYRQGSID) of cloned rat mu opioid receptor, reduced the analgesic potency of DAMGO, morphine and beta-endorphin-(1-31) when studied 48 h later in the tail-flick test. Antinociception elicited by delta agonists, DPDPE and [D-Ala2]-Deltorphin II, and by the kappa agonist U-50488H, was fully expressed in mice undergoing this treatment. The specific binding displayed by 0.6 nM [3H]-DAMGO was reduced in membranes preincubated with the antiserum, whereas no change could be detected for 3 nM [3H]-DPDPE or 2 nM [3H]-U-69593 labelling delta and kappa opioid receptors respectively. Naloxonazine, irreversible antagonist of the pharmacologically defined mu 1 opioid receptor, and beta-funaltrexamine (beta-FNA), that also displays irreversible antagonism at mu 1/2 receptors, when injected i.c.v. 24 h before the opioids significantly reduced the activity of DAMGO and morphine. In mice treated with naloxonazine, but not with beta-FNA, the antibody further reduced the remaining analgesic effect of DAMGO and morphine. Thus, both the antibody and beta-FNA blocked a wider population of mu opioid receptors than that tagged by naloxonazine. Topics: Amino Acid Sequence; Analgesia; Animals; Antibodies; Benzeneacetamides; beta-Endorphin; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Immunization, Passive; Male; Mice; Molecular Sequence Data; Morphine; Naloxone; Peptide Fragments; Pyrrolidines; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu | 1995 |
Modification of mu-opioid agonist-induced locomotor activity and development of morphine dependence by diabetes.
We examined the locomotor-enhancing action of mu-opioid receptor agonists, such as morphine and [D-Ala2, N-MePhe4, Gly-ol5]enkephalin (DAMGO), and physical dependence on morphine in diabetic and nondiabetic mice. Morphine (5-20 mg/kg, s.c.) and DAMGO (1-4 nmol, i.c.v.) had a dose-dependent locomotor-enhancing effect in both nondiabetic and diabetic mice. The locomotor-enhancing effects of morphine and DAMGO were significantly less in diabetic mice than in nondiabetic mice, and were significantly reduced after pretreatment with either beta-funaltrexamine (20 mg/kg, s.c.), a selective mu-opioid receptor antagonist, or naloxonazine (35 mg/kg, s.c.), a selective mu1-opioid receptor antagonist. Both diabetic and nondiabetic mice were chronically treated with morphine (8-45 mg/kg, s.c.) for 5 days. During this treatment, neither diabetic nor nondiabetic mice showed any signs of toxicity. After morphine treatment, withdrawal was precipitated by injection of naloxone (0.3-10 mg/kg, s.c.). Several withdrawal signs, such as weight loss, diarrhea, ptosis, jumping and body shakes, were observed after naloxone challenge in morphine-dependent nondiabetic mice. Although morphine-dependent diabetic mice showed greater weight loss than nondiabetic mice, the incidence of jumping and body shakes after naloxone challenge in diabetic mice were lower than that in nondiabetic mice. These results suggest that diabetic mice are selectively hyporesponsive to mu1-opioid receptor-mediated locomotor enhancement. Furthermore, diabetes may affect mu1-opioid receptor-mediated naloxone-precipitated signs of withdrawal from physical dependence on morphine. Topics: Animals; Diabetes Mellitus, Experimental; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Male; Mice; Mice, Inbred ICR; Morphine; Morphine Dependence; Motor Activity; Naloxone; Naltrexone; Receptors, Opioid, mu; Streptozocin | 1995 |
Characterisation of mu-opioid receptors on SH-SY5Y cells using naloxonazine and beta-funaltrexamine.
The irreversible opioid receptor antagonists naloxonazine and beta-funaltrexamine have been used to determine whether multiple mu-opioid receptors exist on undifferentiated SH-SY5Y human neuroblastoma cells. Naloxonazine binds irreversibly to the mu 1-opioid receptor subtype and reversibly to the mu 2-opioid receptor subtype. On SH-SY5Y cells naloxonazine afforded a Ki of 3.4 +/- 0.7 nM, and was fully reversible, indicating the mu-opioid receptor population on SH-SY5Y cells was solely of the mu 2-opioid receptor subtype. The alkylating agent beta-funaltrexamine was maximally able to alkylate only 60% of the mu-opioid receptor sites on SH-SY5Y cells, labelled with [3H]diprenorphine or [3H][D-Ala2,MePhe4,Gly(ol)5]enkephalin (DAMGO). The reversible binding of naloxonazine and the insensitivity of a percentage of the mu-opioid receptor sites to alkylation by beta-funaltrexamine suggests that differences do exist in the mu 2-opioid receptor population on undifferentiated SH-SY5Y cells. This may indicate further heterogeneity or the inability of beta-funaltrexamine to alkylate all relevant nucleophilic groups in a single population of receptors. Topics: Amino Acid Sequence; Animals; Brain Neoplasms; Cerebral Cortex; Diprenorphine; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Humans; Ligands; Molecular Sequence Data; Naloxone; Naltrexone; Neuroblastoma; Rats; Receptors, Opioid, mu; Somatostatin; Tumor Cells, Cultured | 1994 |
Beta-funaltrexamine blockade of opioid-induced inhibition of somatostatin secretion from rat stomach.
Opioid peptides are potent inhibitors of gastric somatostatin secretion. In the current investigation the effect of mu-opioid receptor blockade on responses to [D-Ala2,N-Me-Phe4,Gly5-ol]enkephalin (DAGO) was studied. Gastric inhibitory polypeptide (GIP; 1 nM) -stimulated secretion of immunoreactive somatostatin was almost completely inhibited by DAGO (1 microM). The mu-receptor antagonists, beta-funaltrexamine and naloxonazine, blocked the effect of DAGO. Pretreatment of rats with beta-funaltrexamine, 24 h prior to perfusion, reduced the percentage inhibition by DAGO from 88.6 +/- 5.2% to 50.7 +/- 9.3%. These studies support the involvement of mu-opioid inhibitory receptors in the regulation of gastric somatostatin secretion. Topics: Amino Acid Sequence; Analgesics; Animals; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Gastric Inhibitory Polypeptide; Gastric Mucosa; In Vitro Techniques; Male; Molecular Sequence Data; Naloxone; Naltrexone; Narcotic Antagonists; Radioimmunoassay; Rats; Rats, Wistar; Somatostatin | 1994 |
TRIMU-5, a mu 2-opioid receptor agonist, stimulates the hypothalamo-pituitary-adrenal axis.
Previous work in our laboratory has shown that DAMGO (ICV) will cause an elevation in plasma corticosterone (CS). The effect was blocked by pretreatment with beta-FNA but not by naloxonazine, suggesting indirectly that DAMGO's effect was via a mu 2-opioid receptor. TRIMU-5, a mu 2 agonist/mu 1 antagonist, was tested in a similar series of experiments to show more directly that the effect of DAMGO to increase plasma CS was via the mu 2 receptor. Experiments were conducted on conscious, unrestrained, male Sprague-Dawley rats with chronic IV catheters and ICV cannula guides allowing for serial blood sampling and drug injection into the right lateral ventricle. During this process, animals remained isolated in sound-attenuated one-way vision boxes. TRIMU-5, 50 micrograms, produced a sustained increase in plasma CS for a 3-h period. The response peaked at 30 min, showing a plasma CS level of 19.7 +/- 1.4 micrograms/dl. A lower dose, 10 micrograms, did not produce a significant response. A higher dose, 100 micrograms, produced an elevated hormone response in a pilot study but was lethal in half the animals. The plasma CS increase was blocked by pretreatment with beta-FNA, 20 micrograms ICV, given 18 h before TRIMU-5, but was unaffected by naloxonazine pretreatment, 20 mg/kg i.v., also administered 18 h before TRIMU-5. These data confirm our earlier conclusion that the effect of DAMGO to elevate plasma CS was through a mu 2-opioid receptor. Topics: Animals; Corticosterone; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Hypothalamo-Hypophyseal System; Kinetics; Male; Naloxone; Naltrexone; Oligopeptides; Pituitary-Adrenal System; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu | 1994 |
Differential regulation of adenylyl cyclase activity by mu and delta opioids in rat caudate putamen and nucleus accumbens.
The regulation of adenylyl cyclase by opioid receptor types was characterized in the rat nucleus accumbens, a brain region that is involved in the reinforcing effects of drugs of abuse, and in the caudate putamen, a region not implicated in drug reinforcement. Both mu and delta opioid ligands inhibited adenylyl cyclase activity in the nucleus accumbens and in the caudate putamen of rat, whereas the kappa agonist, U69,593 (5 alpha, 7 alpha, 8 alpha)-(+)-N-methyl-N-[7-(pyrrolidinyl)-1-oxaspiro [4,5]dec-8-yl]-benzeneacetamide, was ineffective. The mu agonists, DAMGO and Tyr-D-Arg-Phe-Sar, were more potent inhibitors of the enzyme in caudate putamen than in nucleus accumbens. The delta-selective agonists, DSLET and [D-Ala2]-deltorphin II more potently inhibited adenylyl cyclase in nucleus accumbens than in caudate putamen. Inhibition of the enzyme by DAMGO and Tyr-D-Arg-Phe-Sar was antagonized by the mu-selective competitive antagonist, CTOP D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2, and the noncompetitive mu antagonists, beta-funaltrexamine and naloxonazine. Inhibition of adenylyl cyclase activity by the delta-selective ligands, DPDPE, DSLET and [D-Ala2]-deltorphin II was unaffected by these antagonists. Conversely, the delta-selective antagonists, ICI 174,864 N-allyl2-Tyr-(alpha-aminisobutyric acid)2-Phe-Leu-OH and naltrindole, blocked the effects of the delta but not the mu opioid ligands. Adenylyl cyclase activity in nucleus accumbens and in caudate putamen is subject to regulation by both mu and delta opioid receptors. Topics: Adenylyl Cyclases; Amino Acid Sequence; Animals; Benzeneacetamides; Caudate Nucleus; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Enkephalins; Male; Molecular Sequence Data; Naloxone; Naltrexone; Nucleus Accumbens; Oligopeptides; Putamen; Pyrrolidines; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, mu; Signal Transduction; Somatostatin | 1993 |
The use of specific opioid agonists and antagonists to delineate the vagally mediated antinociceptive and cardiovascular effects of intravenous morphine.
Intravenous (i.v.) administration of morphine produces a dose-dependent inhibition of the tail-flick (TF) reflex, depressor response, and bradycardia in the rat. Some of these effects depend on interactions of i.v. morphine with peripheral opioid receptors and the integrity of cervical vagal afferents. The present studies used the relatively specific mu, delta, and kappa opioid receptor agonists (DAGO, DPDPE or U-50,488H) and the relatively specific mu, delta, and kappa opioid receptor antagonists (beta-FNA, naloxonazine, naltrindole or nor-BNI) in either intact rats or rats with bilateral cervical vagotomy (CVAG) to delineate the vagal afferent/opioid-mediated components of these effects. I.v. administration of DAGO in intact rats produced a dose-dependent inhibition of the TF reflex, depressor response, and bradycardia virtually identical to those produced by i.v. morphine. All of these effects of either i.v. DAGO or i.v. morphine were significantly attenuated by either bilateral CVAG or pre-treatment with the mu 2 opioid receptor antagonist beta-FNA. Pre-treatment with the mu 1 opioid receptor antagonist naloxonazine affected i.v. DAGO-induced inhibition of the TF reflex and bradycardia, but had no significant effects on i.v. morphine-produced responses. I.v. administration of DPDPE produced a dose-dependent pressor response, but had no marked effects on the either the TF reflex or heart rate (HR). The pressor response was unaffected by either bilateral CVAG or pre-treatment with naltrindole, naloxone, hexamethonium, or bertylium. i.v. administration of U-50,488H produced a depressor response and bradycardia, but had no significant effect on the TF reflex. The depressor response and bradycardia produced by i.v. U-50,488H were unaffected by bilateral CVAG, but could be antagonized by pre-treatment with either nor-BNI or naloxone. These studies suggest that the vagal afferent-mediated antinociceptive and cardiovascular effects of i.v. morphine are primarily mediated by interactions with low affinity mu 2 opioid receptors. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analysis of Variance; Animals; Blood Pressure; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Heart Rate; Hexamethonium; Hexamethonium Compounds; Indoles; Injections, Intravenous; Male; Morphinans; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Narcotics; Pain; Pyrrolidines; Rats; Rats, Sprague-Dawley; Reference Values; Time Factors; Vagotomy; Vagus Nerve | 1993 |
Characterization of the mu-opioid receptors on SH-SY5Y cells using beta-funaltrexamine (beta-FNA) and naloxonazine.
Topics: Analgesics; Cell Line; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Humans; Kinetics; Naloxone; Naltrexone; Narcotic Antagonists; Neuroblastoma; Receptors, Opioid, mu; Tumor Cells, Cultured | 1993 |
Possible involvement of mu 2-mediated mechanisms in mu-mediated antitussive activity in the mouse.
The effect of pretreatment with naloxonazine on mu-opioid agonist-mediated antitussive effects was studied in mice. The antitussive effects of [D-Ala2, MePhe4, Gly-ol5]enkephalin (DAMGO) and morphine were significantly antagonized by naloxone pretreatment, 1 mg/kg given i.p. 5 min earlier, but not by naloxonazine pretreatment, 35 mg/kg given s.c. 24 h earlier. In contrast, the antinociceptive effects of these mu agonists, as determined by the tail-flick method, were significantly reduced by pretreatment with both naloxone and naloxonazine. These results suggest that mu 2 rather than mu 1 mechanisms are involved in mu-mediated antitussive effects. Topics: Analgesics; Animals; Antitussive Agents; Capsaicin; Cough; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Male; Mice; Mice, Inbred ICR; Morphine; Naloxone; Reaction Time; Receptors, Opioid, mu | 1993 |
DAMGO stimulates the hypothalamo-pituitary-adrenal axis through a mu-2 opioid receptor.
DAMGO, a highly selective mu opioid agonist, is capable of stimulating the hypothalamo-pituitary-adrenal (HPA) axis to produce a dose-related elevation in plasma corticosterone (CS). The purpose of this study was to confirm that this action was mu receptor selective and to determine which of the mu receptors was involved using naloxonazine, a mu-1 receptor-selective antagonist. Experiments were done in male rats with chronic i.v. catheters and i.c.v. cannula guides. This enabled the withdrawal of serial blood samples in conscious unrestrained animals that were isolated in sound-attenuated one-way vision boxes. DAMGO, 8 and 16 micrograms administered i.c.v. caused significant and prolonged elevation of plasma CS. beta-funaltrexamine (beta-FNA) in progressively increasing doses (i.c.v.), antagonized the effect of DAMGO. The hormone response to DAMGO was unaffected by pretreatment with norbinaltorphimine or naltrindole (both i.c.v.). Naloxonazine, 50 micrograms, administered i.c.v. 18 hr before DAMGO did not antagonize the response to DAMGO. The same dose of naloxonazine given 2 hr before did reduce the response to DAMGO. Naloxonazine, 20 mg/kg i.v., given 18 hr before did not alter DAMGO's effect on plasma CS; however, the analgesic response to DAMGO in the same animals 24 hr later was antagonized by naloxonazine pretreatment. Pretreatment with beta-FNA or naloxonazine i.c.v. did not alter the plasma CS increase after exposure to ether vapor.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Analgesics; Animals; Corticosterone; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Hypothalamo-Hypophyseal System; Male; Naloxone; Naltrexone; Pituitary-Adrenal System; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu | 1993 |
Opioid-inhibited adenylyl cyclase in rat brain membranes: lack of correlation with high-affinity opioid receptor binding sites.
Opioid agonists bind to GTP-binding (G-protein)-coupled receptors to inhibit adenylyl cyclase. To explore the relationship between opioid receptor binding sites and opioid-inhibited adenylyl cyclase, membranes from rat striatum were incubated with agents that block opioid receptor binding. These agents included irreversible opioid agonists (oxymorphone-p-nitrophenylhydrazone), irreversible antagonists [naloxonazine, beta-funaltrexamine, and beta-chlornaltrexamine (beta-CNA)], and phospholipase A2. After preincubation with these agents, the same membranes were assayed for high-affinity opioid receptor binding [3H-labeled D-alanine-4-N-methylphenylalanine-5-glycine-ol-enkephalin (mu), 3H-labeled 2-D-serine-5-L-leucine-6-L-threonine enkephalin (delta), and [3H]ethylketocylazocine (EKC) sites] and opioid-inhibited adenylyl cyclase. Although most agents produced persistent blockade in binding of ligands to high-affinity mu, delta, and EKC sites, no change in opioid-inhibited adenylyl cyclase was detected. In most treated membranes, both the IC50 and the maximal inhibition of adenylyl cyclase by opioid agonists were identical to values in untreated membranes. Only beta-CNA blocked opioid-inhibited adenylyl cyclase by decreasing maximal inhibition and increasing the IC50 of opioid agonists. This effect of beta-CNA was not due to nonspecific interactions with G(i), Gs, or the catalytic unit of adenylyl cyclase, as neither guanylylimidodiphosphate-inhibited, NaF-stimulated, nor forskolin-stimulated activity was altered by beta-CNA pretreatment. Phospholipase A2 decreased opioid-inhibited adenylyl cyclase only when the enzyme was incubated with brain membranes in the presence of NaCl and GTP. These results confirm that the receptors that inhibit adenylyl cyclase in brain do not correspond to the high-affinity mu, delta, or EKC sites identified in brain by traditional binding studies. Topics: Adenylyl Cyclase Inhibitors; Adenylyl Cyclases; Animals; Binding Sites; Brain; Cell Membrane; Colforsin; Endorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine; Enkephalins; Guanosine Triphosphate; Male; Naloxone; Phospholipases A; Phospholipases A2; Rats; Rats, Sprague-Dawley; Receptors, Opioid; Sodium; Sodium Chloride; Sodium Fluoride | 1992 |
Comparison of naloxonazine and beta-funaltrexamine antagonism of mu 1 and mu 2 opioid actions.
beta-Funaltrexamine (beta-FNA) irreversibly blocks morphine analgesia, lethality and its inhibition of gastrointestinal transit, confirming that these actions involve mu receptors. In dose-response studies, beta-FNA antagonized all the actions with similar potencies (ID50 values of 12.1, 11.3 and 12.3 mg/kg, respectively). beta-FNA also reduced intra-cerebroventricular and intrathecal DAMGO analgesia equally well (ID50 values of 6.09 and 7.7 mg/kg, respectively). Naloxanazine blocked systemic morphine analgesia (ID50 value 9.5 mg/kg) and supraspinal DAMGO analgesia (ID50 value 6.1 mg/kg) as potently as beta-FNA. However, against spinal DAMGO analgesia, morphine's inhibition of gastro-intestinal transit or lethality, naloxonazine (ID50 values 38.8, 40.7 and 40.9 mg/kg, respectively) was significantly less active than beta-FNA (p less than 0.05). beta-FNA remains a valuable tool in the classification of mu opioid actions. Within the mu category, actions can be defined as either mu 1 (naloxonazine-sensitive) or mu 2 (naloxonazine-insensitive). Topics: Animals; Drug Administration Schedule; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Injections, Subcutaneous; Male; Mice; Morphine; Naloxone; Naltrexone; Narcotic Antagonists; Receptors, Opioid; Receptors, Opioid, mu | 1991 |
Different mu receptor subtypes mediate spinal and supraspinal analgesia in mice.
To examine the relative roles of mu 1- and mu 2-receptors in spinal and supraspinal analgesia, we assessed the effects of naloxonazine, naloxone, beta-funaltrexamine (beta-FNA), and ICI-154,129 on tail-flick analgesia produced by intrathecal or intracerebroventricular injections of the highly mu-selective agonist, [D-Ala2,Me-Phe4,Gly(ol)5]enkephalin (DAGO; mu 1 and mu 2), [D-Ser2,Leu5]enkephalin-Thr6 (DSLET; mu 1 and delta), and the selective delta-receptor agonist [D-Pen2,D-Pen5]enkephalin (DPDPE) in mice. Both DAGO and DSLET supraspinal analgesia were mediated through mu 1-receptors. Naloxonazine shifted the supraspinal DAGO dose-response curve 4-fold to the right without changing the curve for spinal DAGO. Likewise, naloxonazine pretreatment shifted supraspinal DSLET analgesia 10-fold, whereas spinal DSLET analgesia was not affected. DPDPE analgesia was not antagonized spinally or supraspinally by naloxonazine pretreatment. These findings suggest that DAGO produces analgesia spinally and supraspinally through different sets of mu-receptors. Moreover, at least two distinct receptor subtypes mediated spinal analgesia. First, naloxone inhibited spinal DAGO analgesia more potently than DPDPE analgesia. Second, the irreversible mu-antagonist, beta-FNA, blocks spinal DAGO analgesia. Since spinal DAGO was insensitive to naloxonazine, ruling out a mu 1 mechanism, these results indicate a role for mu 2-receptors. Spinal DAGO analgesia also developed tolerance to morphine far more slowly than supraspinal DAGO analgesia even though mu-receptors mediate both, as indicated by their sensitivity towards beta-FNA. Finally, the delta-antagonist ICI-154,129 is a more potent inhibitor of spinal DPDPE analgesia than spinal DAGO analgesia. Thus, delta-receptors mediate spinal DPDPE analgesia. Topics: Analgesia; Anesthesia, Spinal; Animals; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Enkephalins; Injections, Intraventricular; Injections, Spinal; Male; Mice; Morphine; Naloxone; Oligopeptides; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, mu | 1989 |
Dissociation of opioid antinociception and central gastrointestinal propulsion in the mouse: studies with naloxonazine.
The effect of pretreatment with naloxonazine on opioid-mediated antinociception against a thermal stimulus (55 degrees C warm-water tail-flick test) and inhibition of gastrointestinal transit at supraspinal and spinal levels was studied in unanesthetized mice. The mu-selective agonist [D-Ala2, N-methyl-Phe4, Gly5-ol]enkephalin (DAGO), the delta-selective agonist [D-Pen2, D-Pen5]enkephalin (DPDPE) and the reference mu-acting agonist morphine, all produced antinociception after either i.c.v. or intrathecal(ly) (i.t.) administration. Morphine and DAGO, but not DPDPE, inhibited gastrointestinal transit after i.c.v. administration, whereas all three agonists slowed gut propulsion when given i.t. A single s.c. naloxonazine pretreatment, 35 mg/kg given 24 hr earlier, failed to displace the dose-response line for i.c.v. DPDPE antinociception but produced a marked rightward displacement of the i.c.v. morphine and DAGO dose-response lines for antinociception. In contrast, naloxonazine (35 mg/kg) pretreatment did not alter the antinociceptive effects of i.t. morphine, DAGO or DPDPE. The effects of naloxonazine pretreatment on inhibition of gut propulsion were the converse of those observed for antinociception at supraspinal and spinal sites; naloxonazine had no effect on the antitransit properties of i.c.v. morphine and DAGO but inhibited the antitransit properties of all three agonists when they were given i.t. These results support the view that opioids may produce their supraspinal antitransit effects at a receptor different from that mediating antinociception; morphine and DAGO mediate their antitransit effects at a naloxonazine-insensitive site, whereas their antinociceptive effects are produced at the naloxonazine-sensitive receptor.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Animals; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Gastrointestinal Motility; Injections, Intraventricular; Male; Mice; Morphine; Naloxone; Nociceptors; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, mu | 1988 |
Opiate binding in calf thalamic membranes: a selective mu 1 binding assay.
In the present study, we examined the binding of [3H][D-Ala2,D-Leu5]enkephalin ([ 3H]DADL) to bovine thalamic membranes. Scatchard plots were linear with a KD of 0.7 nM. However, competition experiments suggested binding heterogeneity. Approximately 20% of [3H]DADL binding was easily inhibited by [D-Pen2,D-Pen5]enkephalin (DPDPE) and was insensitive to morphine, implying labeling of delta receptors. The remaining 80% of binding was quite sensitive to both morphine and [D-Ala2,MePhe4,Gly(ol)5]enkephalin (DAGO) and insensitive to DPDPE, consistent with a mu receptor. However, this binding did not correspond to classical morphine-selective mu receptors. Unlike morphine-selective receptors, this binding had similar affinities for morphine, DAGO, DADL and [D-Ser2,Leu5]enkephalin-Thr6 (DSLET). In addition, it was far more sensitive to naloxonazine's wash-resistant inhibition and magnesium-induced enhancement of binding than either the morphine-selective (mu 2) or delta sites. [3H]DSLET binding yielded results very similar to those using [3H]DADL. In conclusion, approximately 80% of [3H]DADL binding in thalamus corresponds to a mu receptor distinct from the classical morphine-selective site. Based upon the results of our studies, we feel that this binding represents mu 1 receptors. DPDPE (10 nM) can effectively inhibit the binding of [3H]DADL to delta receptors, leaving a relatively homogeneous labeling of mu 1 sites. The availability of this selective binding assay should facilitate additional studies of mu 1 receptors. Topics: Animals; Cattle; Dynorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Enkephalin, Leucine-2-Alanine; Enkephalins; Hydrogen-Ion Concentration; In Vitro Techniques; Naloxone; Oligopeptides; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, mu; Thalamus | 1988 |
Interaction of [D-Ser2,Leu5]enkephalin-Thr6 (DSLET), a relatively selective delta ligand, with mu1 opioid binding sites.
Using binding approaches, we have confirmed the high selectivity of [D-Ser2,Leu5]enkephalin-Thr6 (DSLET) to delta, as opposed to morphine-preferring (mu2) sites in rat brain. However, detailed experiments studies indicate that this ligand also labels mu1 sites with very high affinity. Saturation studies of 3H-DSLET binding reveal curvilinear plots. Treating tissue with naloxonazine to block mu1 sites, eliminates the higher affinity binding component. Competition studies of the other peptides against 3H-DSLET and 3H[D-Ala2,MePhe4,Gly(ol)5]enkephalin (3H-DAMPGO) binding also implied high affinity binding of these peptides to mu1 sites. The ability of these peptides to interact with mu1 sites may help explain some of their pharmacological actions. Topics: Animals; Binding Sites; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine; Enkephalins; Kinetics; Male; Naloxone; Oligopeptides; Rats; Rats, Inbred Strains; Receptors, Opioid | 1987 |
Naloxonazine and opioid-induced inhibition of reflex urinary bladder contractions.
Spontaneous volume-induced contractions of the urinary bladder were recorded isometrically in urethane-anesthetized rats. Contractions were inhibited by alternate submaximal but equieffective doses of the selective mu and delta-opioid ligands [D-Ala2-Me-Phe4,Gly(ol)5] enkephaline (DAGO) and [2-D-penicillamine, 5-D-penicillamine] enkephalin (DPDPE), respectively, administered by the intracerebroventricular (i.c.v.) or spinal intrathecal (i.t.) route. Naloxonazine, postulated to be an irreversible mu 1-opioid receptor antagonist, administered by the same route, antagonized the effects of both DAGO and DPDPE. The antagonism of the effect of DAGO was reversed 3-4 hr later but that of DPDPE was more prolonged. Recovery of the effect of DPDPE was observed some 24 hr later. A similar pattern of activity against DAGO and DPDPE given intraventricularly or intrathecally was observed following intravenous injection of naloxonazine (10 mg/kg). Also naloxonazine (i.c.v., i.t. or i.v.) antagonized the effect of morphine given intraventricularly or intrathecally, but antagonism was not observed when morphine was retested 3-4 hr and 24 hr later. Naloxonazine increased the frequency of contraction of the bladder after each route of administration. This effect lasted 1-3 hr and was not seen 24 hr later. Systemic administration of naloxone (10 mg/kg, i.v) also increased the frequency of bladder contraction and attenuated or abolished the effect of DAGO given intraventricularly or intrathecally and the delta-receptor agonist [2-D-penicillamine, 5-L-penicillamine] enkephaline (DPLPE).(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Animals; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Female; Male; Muscle Contraction; Naloxone; Rats; Receptors, Opioid; Reflex; Urinary Bladder | 1987 |
Mu opioid receptor involvement in enkephalin activation of dopamine neurons in the ventral tegmental area.
Many lines of evidence suggest that opioids act in the A10 dopamine (DA) region to activate DA neurons projecting to limbic terminal areas. Thus, injection of morphine and enkephalin analogs into the ventral tegmental area (a major subnucleus of the A10 DA region) produces an increase in spontaneous motor activity that is blocked by DA receptor antagonists and increases DA metabolism in the nucleus accumbens. The present study utilized enkephalin analogs specific for either the mu or delta opioid receptor to evaluate which receptor subtype(s) is activating the A10 DA neurons. It was found that the specific mu agonist, Try-D-Ala-Gly-NMe-Phe-Gly-ol, was significantly more potent than the specific delta agonist, [D-Pen2,5]-enkephalin, at increasing spontaneous motor activity or DA metabolism in the nucleus accumbens, septum, striatum and prefrontal cortex. Further, naloxonazine, a putative antagonist of the mu-1 isoreceptor, significantly attenuated the motor-stimulant effect and increase in DA metabolism produced by intra-ventral tegmental area injection of Tyr-D-Ala-Gly-NMe-Phe-Gly-ol. It was found that the disposition of microinjected Tyr-D-Ala-Gly-NMe-Phe-Gly-ol or [D-Pen2,5]-enkephalin was not responsible for the difference in their potency. It is concluded that the mu receptor and, perhaps, the mu-1 isoreceptor mediate a major portion of the activation of A10 DA neurons previously demonstrated with mixed mu and delta opioid agonists. Topics: Animals; Dopamine; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Methionine; Enkephalins; Male; Motor Activity; Naloxone; Neurons; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, Opioid, mu; Tegmentum Mesencephali | 1987 |
Naloxonazine effects on the interaction of enkephalin analogs with mu-1, mu and delta opioid binding sites in rat brain membranes.
The authors have characterized the opioid receptors of rat brain membranes using self- and cross-displacement studies with both tritiated and unlabeled [D-Ala2, D-Leu5]-enkephalin and [D-Ala2, MePhe4, Gly-ol5]-enkephalin. Mathematical modeling demonstrated the presence of three classes of binding sites, corresponding to mu, delta and the putative mu-1 classes of site. Unlabeled naloxonazine shows high affinity for all three classes of sites, with highest affinity for the mu-1 sites. Membranes were preincubated with 50 nM naloxonazine or with controls (50 nM naloxone or buffer) for 30 min. Preincubation of membranes with 50 nM naloxonazine resulted in a dramatic, nearly 2-fold reduction in the binding of [3H][D-Ala2, D-Leu5]-enkephalin and [3H][D-Ala2, MePhe4, Gly-ol5]-enkephalin relative to the controls. Quantitative analyses using mathematical modeling with program "LIGAND" suggested that this effect was primarily "competitive," i.e., attributable to changes in affinity, with no apparent or detectable noncompetitive or irreversible effects on binding capacities for the three classes of sites. Topics: Animals; Binding, Competitive; Brain; Cell Membrane; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine; Enkephalin, Leucine-2-Alanine; Enkephalins; Naloxone; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, mu | 1987 |
Evidence that naloxonazine produces prolonged antagonism of central delta opioid receptor activity in vivo.
Intracerebroventricular (i.c.v.) administrations of the postulated mu 1 opioid receptor antagonist naloxonazine produced an increase in the frequency of urinary bladder contractions recorded isometrically in the anesthetized rat. This substance also antagonized the inhibition of spontaneous bladder contractions produced by submaximal i.c.v. doses of the highly selective mu opioid agonist [D-Ala2-MePhe4,Gly-(ol)5]enkephalin (DAGO) and the delta opioid agonist [D-Pen2,D-Pen5]enkephalin (DPDPE). The antagonism of DAGO was reversible but that of DPDPE lasted up to 30 h. These data suggest that endogenous opioids are involved in the central control of bladder motility and that naloxonazine is a long-lasting delta opioid receptor antagonist. Topics: Animals; Central Nervous System; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Female; Naloxone; Neural Inhibition; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, Opioid, delta; Urinary Bladder | 1984 |