enkephalin--ala(2)-mephe(4)-gly(5)- and dermorphin

enkephalin--ala(2)-mephe(4)-gly(5)- has been researched along with dermorphin* in 23 studies

Other Studies

23 other study(ies) available for enkephalin--ala(2)-mephe(4)-gly(5)- and dermorphin

ArticleYear
GABAergic transmission and enhanced modulation by opioids and endocannabinoids in adult rat rostral ventromedial medulla.
    The Journal of physiology, 2015, Jan-01, Volume: 593, Issue:1

    Electrical stimulation of the rostral ventromedial medulla (RVM) facilitates pain behaviours in neonates but inhibits these behaviours in adults. The cellular mechanisms underlying these changes in RVM modulation of pain behaviours are not known. We optimized whole-cell patch-clamp recordings for RVM neurons in animals older than postnatal day 30 and compared the results to postnatal day 10-21 animals. Our results demonstrate that the γ-aminobutyric acid (GABA) release is lower and opioid effects are more evident in adult rats compared to early postnatal rats. A cannabinoid receptor antagonist significantly increased GABA release in mature but not in immature RVM neurons suggesting the presence of local endocannabinoid tone in mature RVM. Neurons in the rostral ventromedial medulla (RVM) play critical and complex roles in pain modulation. Recent studies have shown that electrical stimulation of the RVM produces pain facilitation in young animals (postnatal (PN) day < 21) but predominantly inhibits pain behaviours in adults. The cellular mechanisms underlying these changes in RVM modulation of pain behaviours are not known. This is in part because whole-cell patch-clamp studies in RVM to date have been in young (PN day < 18) animals because the organization and abundance of myelinated fibres in this region make the RVM a challenging area for whole-cell patch-clamp recording in adults. Several neurotransmitter systems, including GABAergic neurotransmission, undergo developmental changes that mature by PN day 21. Thus, we focused on optimizing whole-cell patch-clamp recordings for RVM neurons in animals older than PN day 30 and compared the results to animals at PN day 10-21. Our results demonstrate that the probability of GABA release is lower and that opioid and endocannabinoid effects are more evident in adult rats (mature) compared to early postnatal (immature) rats. Differences in these properties of RVM neurons may contribute to the developmental changes in descending control of pain from the RVM to the spinal cord.

    Topics: Action Potentials; Aging; Analgesics, Opioid; Animals; Endocannabinoids; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; gamma-Aminobutyric Acid; Male; Medulla Oblongata; Neurons; Opioid Peptides; Organic Chemicals; Rats; Rats, Sprague-Dawley

2015
Increased agonist affinity at the μ-opioid receptor induced by prolonged agonist exposure.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2013, Feb-27, Volume: 33, Issue:9

    Prolonged exposure to high-efficacy agonists results in desensitization of the μ-opioid receptor (MOR). Desensitized receptors are thought to be unable to couple to G-proteins, preventing downstream signaling; however, the changes to the receptor itself are not well characterized. In the current study, confocal imaging was used to determine whether desensitizing conditions cause a change in agonist-receptor interactions. Using rapid solution exchange, the binding kinetics of fluorescently labeled opioid agonist, dermorphin Alexa594 (derm A594), to MORs was measured in live cells. The affinity of derm A594 binding increased after prolonged treatment of cells with multiple agonists that are known to cause receptor desensitization. In contrast, binding of a fluorescent antagonist, naltrexamine Alexa594, was unaffected by similar agonist pretreatment. The increased affinity of derm A594 for the receptor was long-lived and partially reversed after a 45 min wash. Treatment of the cells with pertussis toxin did not alter the increase in affinity of the derm A594 for MOR. Likewise, the affinity of derm A594 for MORs expressed in mouse embryonic fibroblasts derived from arrestin 1 and 2 knock-out animals increased after treatment of the cells with the desensitization protocol. Thus, opioid receptors were "imprinted" with a memory of prior agonist exposure that was independent of G-protein activation or arrestin binding that altered subsequent agonist-receptor interactions. The increased affinity suggests that acute desensitization results in a long-lasting but reversible conformational change in the receptor.

    Topics: Analgesics, Opioid; Analysis of Variance; Animals; Arrestin; Cell Membrane; Cells, Cultured; Dose-Response Relationship, Drug; Embryo, Mammalian; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Fibroblasts; Gene Expression; Guanosine 5'-O-(3-Thiotriphosphate); HEK293 Cells; Humans; Ligands; Mice; Mice, Knockout; Morphine; Naltrexone; Narcotic Antagonists; Opioid Peptides; Organic Chemicals; Pertussis Toxin; Pharmacological Phenomena; Protein Binding; Protein Conformation; Radioligand Assay; Receptors, Opioid, mu; Substrate Specificity; Time Factors; Transfection; Tritium

2013
Involvement of mouse μ-opioid receptor splice variants in the spinal antinociception induced by the dermorphin tetrapeptide analog amidino-TAPA.
    European journal of pharmacology, 2011, Jan-25, Volume: 651, Issue:1-3

    The involvement of the mouse μ-opioid receptor (mMOR-1) splice variants in the antinociceptive effect of intrathecally (i.t.) administered N(α)-amidino-Tyr-D-Arg-Phe-β-Ala (amidino-TAPA) and [D-Ala(2),N-MePhe(4),Gly-ol(5)]enkephalin (DAMGO) was investigated in mice by monitoring the recovery from acute antinociceptive tolerance to amidino-TAPA and DAMGO. A single i.t. pretreatment with DAMGO produced an acute antinociceptive tolerance, which peaked at 2h and disappeared within 5h after the pretreatment. In contrast, a single i.t. pretreatment with amidino-TAPA produced an acute antinociceptive tolerance, which disappeared within 3h after the pretreatment. The concomitant i.t. pretreatment with an antisense oligodeoxynucleotide (ODN) for exon-1, exon-12, exon-13 or exon-14 of mMOR-1 maintained the acute antinociceptive tolerance to amidino-TAPA for 24h after the pretreatment. On the other hand, the concomitant i.t. pretreatment with an antisense ODN for exon-1 of mMOR-1, but not an antisense ODN for exon-12, exon-13 or exon-14 of mMOR-1, maintained the acute antinociceptive tolerance to DAMGO for 24h after the pretreatment. The present results suggest that the spinal antinociception of amidino-TAPA is partially mediated through the activation of the amidino-TAPA-sensitive and DAMGO-insensitive mMOR-1 splice variants MOR-1J, MOR-1K and MOR-1L, which contain the sequence encoded by exon-12, exon-13 and exon-14, respectively.

    Topics: Analgesics; Animals; Base Sequence; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Exons; Male; Mice; Oligodeoxyribonucleotides, Antisense; Oligopeptides; Opioid Peptides; Protein Isoforms; Receptors, Opioid, mu; Spinal Cord

2011
Purification and functional reconstitution of monomeric mu-opioid receptors: allosteric modulation of agonist binding by Gi2.
    The Journal of biological chemistry, 2009, Sep-25, Volume: 284, Issue:39

    Despite extensive characterization of the mu-opioid receptor (MOR), the biochemical properties of the isolated receptor remain unclear. In light of recent reports, we proposed that the monomeric form of MOR can activate G proteins and be subject to allosteric regulation. A mu-opioid receptor fused to yellow fluorescent protein (YMOR) was constructed and expressed in insect cells. YMOR binds ligands with high affinity, displays agonist-stimulated [(35)S]guanosine 5'-(gamma-thio)triphosphate binding to Galpha(i), and is allosterically regulated by coupled G(i) protein heterotrimer both in insect cell membranes and as purified protein reconstituted into a phospholipid bilayer in the form of high density lipoprotein particles. Single-particle imaging of fluorescently labeled receptor indicates that the reconstituted YMOR is monomeric. Moreover, single-molecule imaging of a Cy3-labeled agonist, [Lys(7), Cys(8)]dermorphin, illustrates a novel method for studying G protein-coupled receptor-ligand binding and suggests that one molecule of agonist binds per monomeric YMOR. Together these data support the notion that oligomerization of the mu-opioid receptor is not required for agonist and antagonist binding and that the monomeric receptor is the minimal functional unit in regard to G protein activation and strong allosteric regulation of agonist binding by G proteins.

    Topics: Allosteric Regulation; Amino Acid Sequence; Analgesics, Opioid; Animals; Binding, Competitive; Cell Line; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; GTP-Binding Protein alpha Subunit, Gi2; Guanosine 5'-O-(3-Thiotriphosphate); Humans; Lipoproteins, HDL; Luminescent Proteins; Molecular Sequence Data; Opioid Peptides; Protein Binding; Receptors, Opioid, mu; Recombinant Fusion Proteins; Spodoptera

2009
Dermorphin tetrapeptide analogues with 2',6'-dimethylphenylalanine (Dmp) substituted for aromatic amino acids have high mu opioid receptor binding and biological activities.
    Bioorganic & medicinal chemistry letters, 2003, Apr-07, Volume: 13, Issue:7

    To investigate the value of the 2',6'-dimethylphenylalanine (Dmp) residue as an aromatic amino acid substitution, we prepared analogues of the mu opioid receptor-selective dermorphin tetrapeptide Tyr-D-Arg-Phe-betaAla-NH(2) (YRFB) in which Dmp or its D-isomer replaced Tyr(1) or Phe(3). Replacing Phe(3) with Dmp essentially tripled mu receptor affinity and the receptor's in vitro biological activities as determined with the guinea pig ileum (GPI) assay but did not change delta receptor affinity. Despite an inversion of the D configuration at this position, mu receptor affinity and selectivity remained comparable with those of the L-isomer. Replacing the N-terminal Tyr residue with Dmp produced a slightly improved mu receptor affinity and a potent GPI activity, even though the substituted compound lacks the side chain phenolic hydroxyl group at the N-terminal residue. Dual substitution of Dmp for Tyr(1) and Phe(3) produced significantly improved mu receptor affinity and selectivity compared with the singly substituted analogues. Subcutaneous injection of the two analogues, [Dmp(3)]YRFB and [Dmp(1)]YRFB, in mice produced potent analgesic activities that were greater than morphine in the formalin test. These lines of evidence suggest that the Dmp residue would be an effective aromatic amino acid surrogate for both Tyr and Phe in the design and development of novel opioid mimetics.

    Topics: Amino Acids, Aromatic; Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Guinea Pigs; Ileum; In Vitro Techniques; Indicators and Reagents; Kinetics; Male; Mice; Muscle Contraction; Muscle, Smooth; Oligopeptides; Opioid Peptides; Pain Measurement; Phenylalanine; Receptors, Opioid, mu; Vas Deferens

2003
Expression of EGFP-amino-tagged human mu opioid receptor in Drosophila Schneider 2 cells: a potential expression system for large-scale production of G-protein coupled receptors.
    Protein expression and purification, 2003, Volume: 31, Issue:1

    The G-protein coupled receptor (GPCR) human mu opioid receptor (hMOR) fused to the carboxy-terminus of the enhanced green fluorescent protein (EGFP) has been successfully and stably expressed in Drosophila Schneider 2 cells under the control of an inducible metallothionein promoter. Polyclonal cells expressing EGFPhMOR display high-affinity, saturable, and specific binding sites for the opioid antagonist diprenorphine. Competition studies with opioid agonists and antagonists defined the pharmacological profile of a mu opioid receptor similar to that observed in mammalian cells, suggesting proper folding of EGFPhMOR in a high-affinity state in Drosophila cells. The functionality of the fusion protein was demonstrated by the ability of agonist to reduce forskolin-stimulated cyclic AMP production and to induce [35S]GTPgammaS incorporation. The EGFPhMOR protein had the expected molecular weight (70kDa), as demonstrated by protein immunoblotting with anti-EGFP and anti-C-terminus hMOR antibodies. However, quantitative EGFP fluorescence intensity analysis revealed that the total level of expressed EGFPhMOR is 8-fold higher than the level of diprenorphine binding sites, indicating that part of the receptor is not in a high-affinity state. This may in part be due to a population of receptors localized in intracellular compartments, as shown by the distribution of fluorescence between the plasma membrane and the cell interior. This study shows that EGFP is a valuable and versatile tool for monitoring and quantifying expression levels as well as for optimizing and characterizing an expression system. Optimization of the Drosophila Schneider 2 cell expression system will allow large-scale purification of GPCRs, thus enabling structural studies to be undertaken.

    Topics: Animals; Binding, Competitive; Blotting, Western; Cell Line; Cloning, Molecular; Colforsin; Copper Sulfate; Cyclic AMP; Diprenorphine; DNA, Complementary; Drosophila; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Gene Expression; Genetic Vectors; Green Fluorescent Proteins; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Humans; Luminescent Proteins; Metallothionein; Microscopy, Confocal; Morphine; Naloxone; Naltrexone; Oligopeptides; Opioid Peptides; Pertussis Toxin; Polymerase Chain Reaction; Protein Binding; Receptors, G-Protein-Coupled; Receptors, Opioid, mu; Recombinant Fusion Proteins; Spectrometry, Fluorescence; Thermodynamics

2003
Mu and delta opioid receptor regulation of pro-opiomelanocortin peptide secretion from the rat neurointermediate pituitary in vitro.
    Neuropeptides, 2000, Volume: 34, Issue:1

    We investigated the ability of selective opioid agonists and antagonists to influence pro-opiomelanocortin peptide secretion from the rat neurointermediate lobe in vitro. The mu-opioid agonist DAMGO ([D-Ala(2), N-Me-Phe(4), Gly(5)-ol]enkephalin) significantly stimulated beta-endorphin and alpha-melanocyte-stimulating hormone release relative to controls early (30 min) in the incubation period. Similar effects on beta-endorphin secretion were observed with the selective mu-opioid agonist dermorphin. The delta-opioid receptor agonist DPDPE ([D-Pen(2,5)]enkephalin) weakly inhibited beta-endorphin secretion relative to controls while the kappa-opioid receptor agonist U50488 had no effect. The mu-opioid selective antagonist CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2)) inhibited basal beta-endorphin secretion while kappa- and delta-opioid receptor antagonists had no effect. Our data support a role for local mu-opioid receptor control of intermediate lobe pro-opiomelanocortin peptide secretion. Peptide secretion from melanotropes appears to be tonically stimulated by activation of mu-opioid receptors in the absence of intact neuronal innervation to the intermediate lobe.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; alpha-MSH; Analgesics, Opioid; Animals; beta-Endorphin; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; In Vitro Techniques; Male; Oligopeptides; Opioid Peptides; Pituitary Gland; Pro-Opiomelanocortin; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, mu; Somatostatin

2000
Selective antagonism by naloxonazine of antinociception by Tyr-D-Arg-Phe-beta-Ala, a novel dermorphin analogue with high affinity at mu-opioid receptors.
    European journal of pharmacology, 2000, Apr-28, Volume: 395, Issue:2

    To examine the role of mu-opioid receptor subtypes, we assessed the antinociceptive effect of H-Tyr-D-Arg-Phe-beta-Ala-OH (TAPA), an analogue of dermorphin N-terminal peptide in mice, using the tail-flick test. Intracerebroventricularly (i.c.v.) or intrathecally (i.t.) injected TAPA produced potent antinociception with tail-flick as a thermal noxious stimulus. The selective mu(1)-opioid receptor antagonist, naloxonazine (35 mg/kg, s.c.), or the selective mu-opioid receptor antagonist, beta-funaltrexamine, 24 h before testing antagonized the antinociceptive effect of i.t. or i.c.v. TAPA on the response to noxious stimuli. Pretreatment with beta-funaltrexamine completely antagonized the antinociception by both i.c.v. and i.t. administered TAPA and [D-Ala(2), Me-Phe(4), Gly(ol)(5)]enkephalin (DAMGO). Especially in the tail-flick test, pretreatment with naloxonazine produced a marked rightward displacement of the i.t. TAPA dose-response curve for antinociception. Though DAMGO is a highly selective mu-opioid receptor agonist, pretreatment with naloxonazine partially blocked the antinociceptive response to DAMGO after i.c.v., but not after i. t. injection. These results indicate that TAPA can act as a highly selective mu(1)-opioid receptor agonist (notable naloxonazine-sensitive receptor agonist) at not only the supraspinal level, but also the spinal level. These data also reveal different antinociceptive mechanisms for DAMGO and for TAPA.

    Topics: Analgesics; Analgesics, Opioid; Animals; Drug Antagonism; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Injections, Intraventricular; Male; Mice; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides; Opioid Peptides; Pain Measurement; Receptors, Opioid, mu; Time Factors

2000
Characterization of delta, kappa, and mu human opioid receptors overexpressed in baculovirus-infected insect cells.
    The Journal of biological chemistry, 1997, Aug-08, Volume: 272, Issue:32

    The cDNAs encoding human delta (hDOR), kappa (hKOR) and micro (hMOR) opioid receptors were cloned in the baculovirus Autographa californica (AcMNPV) under the control of the polyhedrin promoter with or without an amino-terminal hexahistidine tag. Expression levels were optimized in Spodoptera frugiperda (Sf9) cells and were in the following order hMOR > hDOR > hKOR. The receptors bound antagonists with affinity values similar to those published previously for the receptors expressed in mammalian cells. They also retained selectivity toward specific antagonists. The three receptors bound peptidic agonists with low affinity, suggesting that they might not be functionally coupled to intracellular effectors. Introduction of an amino-terminal hexahistidine tag decreased the levels of expression markedly. Only hMOR-his was expressed at a level allowing binding study, but no difference could be detected in the affinities of both agonists and antagonists compared with the nontagged protein. hMOR expression was also optimized in High Five cells leading to a further increase in protein production. The pharmacological profile was similar to the one obtained when the receptor was expressed in Sf9 cells. Our results show that the baculovirus expression system is suitable for large scale production of human opioid receptors.

    Topics: Analgesics, Opioid; Animals; Baculoviridae; Cells, Cultured; Cloning, Molecular; Diprenorphine; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Gene Expression; Humans; Kinetics; Ligands; Narcotic Antagonists; Oligopeptides; Opioid Peptides; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Recombinant Proteins; Spodoptera; Transfection

1997
Synthesis and pharmacological activity of deltorphin and dermorphin-related glycopeptides.
    Journal of medicinal chemistry, 1997, Aug-29, Volume: 40, Issue:18

    The solid phase procedure, based on the Fmoc chemistry, was used to prepare some opioid deltorphin (H-Tyr-D-Ala-Phe-Asp-Val-Val-Gly-NH2, DEL C) and dermorphin (H-Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2, DER) analogues in which a D-glucopyranosyl moiety is beta-O-glycosidically linked to a Thr4 or Thr7 side chain. Their activities were determined in binding studies based on displacement of mu- and delta-receptor selective radiolabels from rat brain membrane synaptosomes, in guinea pig ileum and rabbit jejenum bioassays, and, in vivo, by a mouse tail-flick test after intracerebroventricular (icv) and subcutaneous (sc) administrations. The glyco analogues modified at position 4 displayed low opioid properties, while Thr7-glycosylated peptides retained high delta- or mu-selectivity and remarkable activity in vivo. In particular, as systemic antinociceptive agents, the latter glucoside-bearing compounds were more potent than the parent unglycosylated peptide counterparts, showing a high blood to brain rate of influx which may be due to the glucose transporter GLUT-1.

    Topics: Amino Acid Sequence; Analgesics, Opioid; Animals; Binding, Competitive; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Glycopeptides; Guinea Pigs; Ileum; In Vitro Techniques; Indicators and Reagents; Jejunum; Kinetics; Male; Mice; Muscle Contraction; Muscle, Smooth; Oligopeptides; Opioid Peptides; Pain; Rabbits; Rats; Rats, Sprague-Dawley; Receptors, Opioid; Structure-Activity Relationship; Synaptosomes

1997
Role of kappa opioid receptors in modulating cholinergic twitches in the circular muscle of guinea-pig colon.
    British journal of pharmacology, 1996, Volume: 119, Issue:5

    1. Single pulse electrical field stimulation (EFS, 0.5 ms pulse width, 60 V at a frequency of 0.05 Hz) induced twitch contractions of mucosa-free circular muscle strips from the guinea-pig proximal colon which were abolished by atropine (0.3 microM), tetrodotoxin (0.3 microM) or omega-conotoxin GVIA (0.1 microM). 2. Various opioid receptor agonist concentration-dependently inhibited twitches with the following rank order of potency (EC50 values in brackets): U 50488 (0.31 nM) > dermorphin (4.3 nM) = dynorphin A (1-13) (6.2 nM) > [D-Ala2, N-MePhe4, Gly5-ol]-enkephalin (DAMGO, 33.5 nM) = [D-Ala2, D-Leu5]-enkephalin (DADLE, 60 nM) > [D-Pen2, D-Pen2, D-Pen5]-enkepahlin (DPDPE, 1144 nM). 3. Peptidase inhibitors (captopril, thiorphan and bestatin, 1 microM each) did not modify the amplitude of twitches. In the presence of peptidase inhibitors the concentration-response curve to dynorphin A (1-13) was displaced to the left to yield an EC50 of 0.35 nM, comparable to that of the selective kappa receptor agonist, U50488. The curves to the other opioid receptor agonist were unaffected by peptidase inhibitors. 4. DPDPE, DADLE, dermorphin and DAMGO consistently induced a concentration-unrelated transient increase in basal tone and a small and transient facilitation of twitches before development of their inhibitory effect. These transient excitatory effects were not observed upon application of dynorphin A (1-13) or U 50488. The contraction produced by DPDPE (30 nM) was largely inhibited (> 80%) by 1 microM atropine. 5. Twitches suppression induced by dynorphin A (1-13) (30 nM) was partly reversed (46 +/- 8%, n = 6) by naloxone (0.3 microM). The potent and selective kappa opioid receptor antagonist nor-binaltorphimine (Nor-BNI, 3-100 nM)) did not affect the amplitude of twitches and potently antagonized (pKB 9.83 +/- 0.09, n = 10) the inhibitory effect of dynorphin. 6. Naloxone (1-300 nM) concentration-dependently depressed the cholinergic twitches: this depressant effect was largely counteracted in the presence of apamin (0.1 microM) and NG-nitro-L-arginine (30 microM) which potentiated cholinergic twitches on their own. 7. Dynorphin A (1-13) (10 nM, n = 6) did not affect the contractile response to exogenous acetylcholine (1 microM), indicating that depression of evoked twitches occurs prejunctionally. 8. We conclude that multiple opioid receptors modulate cholinergic twitches in the circular muscle of guinea-pig proximal colon. While mu and delta opioid receptor ag

    Topics: Acetylcholine; Animals; Colon; Dynorphins; Electric Stimulation; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine-2-Alanine; Enkephalins; Guinea Pigs; In Vitro Techniques; Male; Muscle, Smooth; Naloxone; Oligopeptides; Opioid Peptides; Receptors, Cholinergic; Receptors, Opioid, kappa

1996
DAMGO, a mu-opioid receptor selective ligand, distinguishes between mu-and kappa-opioid receptors at a different region from that for the distinction between mu- and delta-opioid receptors.
    FEBS letters, 1995, May-01, Volume: 364, Issue:1

    The structural basis of opioid receptors (OPRs) for the subtype-selective binding of DAMGO, a mu-opioid receptor selective ligand, was investigated using chimeric mu/kappa-OPRs. Replacement of the region from the middle of the fifth transmembrane domain to the C-terminal of mu-OPR with the corresponding region of mu-OPR remarkably decreased the binding affinity to DAMGO, while the reciprocal chimera revealed the high affinity to DAMGO. These results indicate that DAMGO distinguishes between mu- and mu-OPRs at the region around the third extracellular loop, different from the case of the distinction between mu-and delta-OPRs in which the region around the first extracellular loop is important. Furthermore, displacement studies revealed that the region around the third extracellular loop is involved in the discrimination between mu- and kappa-OPRs not only by peptidic mu- selective ligands but also by non-peptidic ligands, such as morphine and naloxone.

    Topics: Amino Acid Sequence; Analgesics; Animals; Cells, Cultured; Endorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Ligands; Molecular Sequence Data; Morphine; Naloxone; Oligopeptides; Opioid Peptides; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Recombinant Fusion Proteins; Somatostatin; Structure-Activity Relationship

1995
Single diastereomeric desaminotyrosylalanyl tetra- and heptapeptides with opioid antagonistic activity.
    International journal of peptide and protein research, 1995, Volume: 45, Issue:2

    The N-terminal dipeptide Tyr-d-Ala of a mu-selective agonist, dermorphin tetrapeptide (DT, H-Tyr-D-Ala-Phe-Gly-NH2) and delta-selective agonist deltorphin C (DEL-C, H-Tyr-D-Ala-Phe-Asp-Val-Val- Gly-NH2) was changed into an aminodiacyl moiety. The relevant synthetic step is a nucleophilic substitution of bromine from a chiral 2-bromopropanamide by the amino group of tyrosine, with overall retention of configuration. The resulting pseudo tetra- and heptapeptides I-VI were characterized for mu- and delta-opioid receptor binding properties using [3H]DAGO and [3H]DPDPE, respectively, and in a bioassay using guinea pig ileum (GPI) and mouse vas deferens (MVD). As a result of chemical alteration of N-terminal depeptide moiety, all synthesized analogs showed considerable reduction in opioid receptor affinity compared to mu- and delta-prototypes (500-fold on the mu-site, analog I, and 125-fold on the delta-site, analog IV). Interestingly, analogs I and IV showed moderate antagonist activity, respectively, on GPI and MVD, with pA2 values of 6.05 and 6.82. Analog IV did not exhibit the delta-antagonist potency and delta-selectivity of TIPP peptides.

    Topics: Amino Acid Sequence; Animals; Binding Sites; Binding, Competitive; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Guinea Pigs; Ileum; Male; Mice; Molecular Sequence Data; Molecular Structure; Morphine; Narcotic Antagonists; Oligopeptides; Opioid Peptides; Receptors, Opioid; Stereoisomerism; Tetrahydroisoquinolines; Vas Deferens

1995
Characterization of opioid receptors mediating stimulation of adenylate cyclase activity in rat olfactory bulb.
    Molecular pharmacology, 1992, Volume: 42, Issue:1

    We have investigated the pharmacological profile of the opioid stimulation of adenylate cyclase activity in rat olfactory bulb, in order to identify the opioid receptor subtype(s) involved in this response. The synthetic delta-selective agonists (D-Ala2)deltorphin I, (2-D-penicillamine,5-D-penicillamine)-enkephalin, and (D-Ser-Leu5-enkephalyl)-threonine were effective stimulators of the enzyme activity, with EC50 values of 6.7, 420, and 63 nM, respectively. A significant increase was also observed with the mu-selective agonists (N-methyl-Phe3,D-Pro4)-morphiceptin, dermorphin, and (D-Ala2-N-methyl-Phe4-Gly-ol5)-enkephalin (DAGO). The latter two agonists displayed biphasic concentration-response curves, with high affinity components accounting for 75-80% of the maximal responses. The kappa-selective agonists U-50,488 and U-69,593 were ineffective, whereas (D-Ala2)dynorphin A-1-11, dynorphin A, dynorphin A-1-13, and dynorphin A-1-6 acted with a rank order of potency consistent with their affinity for delta receptors. The stimulatory responses of Leu-enkephalin, beta-endorphin, dynorphin A, and delta-selective agonists were counteracted by naltrindole with pA2 values of 9.39-8.93, whereas naloxone was less potent (pA2 = 8.17-7.59). The kappa-selective antagonist norbinaltorphimine was the least potent. The inhibition by naltrindole and naloxone of DAGO stimulation showed biphasic curves, with 90% of the response being antagonized more potently by naloxone than by naltrindole. These results demonstrate that delta- and mu- but not kappa-opioid receptor subtypes stimulate basal adenylate cyclase activity in rat olfactory bulb.

    Topics: Adenylyl Cyclases; Animals; Endorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Enkephalin, Leucine-2-Alanine; Enkephalins; Enzyme Activation; Male; Narcotic Antagonists; Olfactory Bulb; Oligopeptides; Opioid Peptides; Rats; Rats, Inbred Strains; Receptors, Opioid

1992
Dermorphin-related peptides from the skin of Phyllomedusa bicolor and their amidated analogs activate two mu opioid receptor subtypes that modulate antinociception and catalepsy in the rat.
    Proceedings of the National Academy of Sciences of the United States of America, 1992, Aug-01, Volume: 89, Issue:15

    Three naturally occurring dermorphin-like peptides from the skin of the frog Phyllomedusa bicolor, the related carboxyl-terminal amides, and some substituted analogs were synthesized, their binding profiles to opioid receptors were determined, and their biological activities were studied in isolated organ preparations and intact animals. The opioid binding profile revealed a very high selectivity of these peptides for mu sites and suggested the existence of two receptor subtypes, of high and low affinity. The peptides tested acted as potent mu opioid agonists on isolated organ preparations. They were several times more active in inhibiting electrically evoked contractions in guinea pig ileum than in mouse vas deferens. When injected into the lateral brain ventricle or peritoneum of rats, the high-affinity-site-preferring ligand, [Lys7-NH2]dermorphin, behaved as a potent analgesic agent. By contrast, the low-affinity-site-preferring ligand, [Trp4,Asn7-NH2]dermorphin, produced a weak antinociception but an intense catalepsy.

    Topics: Amino Acid Sequence; Analgesics, Opioid; Animals; Anura; Binding, Competitive; Brain; Catalepsy; Cerebral Ventricles; Electric Stimulation; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Guinea Pigs; Injections, Intraventricular; Kinetics; Molecular Sequence Data; Myenteric Plexus; Naloxone; Nociceptors; Oligopeptides; Opioid Peptides; Pain; Rats; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Skin; Skin Physiological Phenomena; Structure-Activity Relationship

1992
Different profile of electrocortical power spectrum changes after micro-infusion into the locus coeruleus of selective agonists at various opioid receptor subtypes in rats.
    British journal of pharmacology, 1990, Volume: 101, Issue:3

    1. The effects of various opioid receptor agonists given directly by means of a chronically implanted cannula into the locus coeruleus (LC) on behaviour and ECoG activity, continuously analysed, and quantified as total power spectrum (0-16 Hz) and in preselected frequency bands (0-3; 3-6; 6-9; 9-12 and 12-16 Hz), were studied in rats. 2. Dermorphin (0.05, 0.5, 1, 2 and 5 pmol) and Tyr-D-Ala-Gly-N-Me-Phe-Gly-ol (DAMGO; 1, 10, 30, 100 pmol and 1 nmol), two typical mu-receptor agonists, applied unilaterally or bilaterally directly into the LC, produced a typical dose-dependent ECoG synchronization with a significant increase in total power spectrum as well as in the lower frequency bands. Dermorphin was found to be approximately 30 times more powerful than DAMGO in producing similar quantitative ECoG changes. 3. D-Ala-D-Leu-Thr-Gly-Gly-Phe-Leu (DADLE; 1, 10, 50 and 100 pmol), a selective delta-receptor agonist, micro-infused into the LC produced dose-dependent behavioural soporific effects and ECoG increase in total power spectrum as well as in 3-6, 6-9, 9-12 Hz frequency bands. In comparison to dermorphin, the ECoG power spectrum effects of DADLE were 10 fold less potent, whereas in comparison to DAMGO it was approximately 3 times more potent. A lower dose (0.1 pmol) was ineffective in changing behaviour and ECoG power spectrum. 4. The microinfusion into the LC of U 50, 488H, a selective Kappa-opioid receptor agonist, (0.25, 1, 2.5, 5 and lOpmol) produced a typical pattern characterized by a first short-lasting (3-25 min) phase of behavioural arousal and ECoG desynchronization, followed by a longer lasting (20-130min according to the dose) phase of behavioural sleep and ECoG synchronization. A lower dose (0.1 pmol) was ineffective in changing behaviour and ECoG power spectrum. 5. Dextromethorphan and ketamine, two selective agonists at sigma-receptors given into the LC (1, 5 and 1Opmol) induce behavioural arousal, increase in locomotor activity and an intense pattern of stereotypedm movements. However, by increasing the dose of ketamine (50 and lOOpmol), marked sedation, postural changes and an increase in low frequency ECoG bands, sometimes associated with high amplitude fast frequency potentials, were observed. 6. Naloxone applied directly into the LC (1 and 2 pmol 15min before) was able to prevent the behavioural and ECoG effects induced by dermorphin, DAMGO and DADLE. Higher doses of naloxone (1Opmol into the LC) were however, required to antagonize the

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Amino Acid Sequence; Animals; Dextromethorphan; Electroencephalography; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine-2-Alanine; Enkephalins; Ketamine; Locus Coeruleus; Male; Molecular Sequence Data; Naloxone; Oligopeptides; Opioid Peptides; Pyrrolidines; Rats; Rats, Inbred Strains; Receptors, Opioid

1990
Opioid receptors and prejunctional modulation of capsaicin-sensitive sensory nerves in guinea-pig left atrium.
    General pharmacology, 1990, Volume: 21, Issue:4

    1. In the isolated electrically driven left atria from reserpine-pretreated guinea-pigs and in presence of 1 microM atropine, electrical field stimulation (EFS) at 10 Hz produces a delayed positive inotropic response (DPIR) involving activation of capsaicin-sensitive afferents. 2. Opioids inhibited the DPIR with the following order of potency: dermorphin greater than [D-Ala2,N-MePhe4, Gly5-ol]-enkephalin (DAGO) greater than or equal to [D-Ala2,D-Leu5]-enkephalin (DADLE) greater than morphine greater than dynorphin A (1-13) greater than [D-Pen2,D-Pen5]-enkephalin (DPDPE). U-50488 was ineffective up to 10 microM. 3. Opioids also inhibited resting inotropism (3 Hz) with the following rank order of potency: DADLE greater than DAGO greater than U-50488 = dynorphin A (1-13) = morphine = DPDPE. 4. Both inhibition of the DPIR and inhibition of resting inotropism were prevented by 10 microM naloxone. 5. Neither dermorphin (0.1 microM) nor DAGO (0.3 microM) or DADLE (1 microM) inhibit responses produced by capsaicin (30 nM) or calcitonin gene-related peptide (3 nM). 6. These findings indicate that capsaicin-sensitive nerves in the guinea-pig atrium are endowed with mu opioid receptors which inhibit transmitter release when sensory nerve terminals are activated by EFS but not by capsaicin.

    Topics: Animals; Atropine; Calcitonin Gene-Related Peptide; Capsaicin; Dynorphins; Electric Stimulation; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Enkephalin, Leucine-2-Alanine; Enkephalins; Guinea Pigs; Heart; In Vitro Techniques; Male; Myocardial Contraction; Naloxone; Neurons, Afferent; Oligopeptides; Opioid Peptides; Peptide Fragments; Receptors, Opioid; Receptors, Opioid, mu; Reserpine

1990
Dermorphin analogues carrying an increased positive net charge in their "message" domain display extremely high mu opioid receptor selectivity.
    Journal of medicinal chemistry, 1989, Volume: 32, Issue:3

    According to the membrane compartment concept the receptor specificity of ligands is based not only on ligand-receptor complementarity but also on specific ligand-membrane interactions. Elaboration of this concept for opioid peptide-receptor interactions had led to the assumption that mu- and delta-receptors are located in anionic and cationic membrane compartments, respectively, and to the prediction that positively charged opioid receptor ligands should display mu-receptor selectivity. To assess the validity of this model, we synthesized a series of dermorphin analogues carrying a net positive charge and tested them in mu- and delta-receptor representative binding assays and bioassays. Some but not all of the prepared compounds showed the receptor-selectivity profile expected on the basis of the membrane compartment concept. In particular, gradual augmentation of the positive charge from 1+ to 3+ in a series of dermorphin-(1-4) tetrapeptide analogues produced an enhancement of mu-receptor affinity and a progressive decrease in delta-receptor affinity, resulting in increasingly higher mu-receptor selectivity. The most selective compound was [D-Arg2,Lys4]dermorphin-(1-4)-amide (DALDA), showing a selectivity ratio (Ki delta/Ki mu = 11,400) more than 10 times higher than that of DAGO (Ki delta /Ki mu = 1050) and, thus, displaying unprecedented mu-receptor specificity. Because of its high positive charge (3+), DALDA may be particularly useful as a very specific agonist for studying peripheral mu-receptor interactions.

    Topics: Animals; Brain; Chemical Phenomena; Chemistry; Guinea Pigs; In Vitro Techniques; Muscle, Smooth; Oligopeptides; Opioid Peptides; Rats; Receptors, Opioid; Receptors, Opioid, mu; Structure-Activity Relationship

1989
Dermenkephalin (Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2): a potent and fully specific agonist for the delta opioid receptor.
    Molecular pharmacology, 1989, Volume: 35, Issue:6

    Dermorphin, Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2 is an extraordinarily potent and highly mu-selective opioid heptapeptide isolated from amphibian skin. It is unique among peptides synthesized by animal cells in having an amino acid residue in the D-configuration. At least two different preprodermorphin cDNAs were cloned from skin of Phylomedusa sauvagei; their predicted amino acid sequences contained four to five homologous repeats of 35 amino acids, each repeat including one copy of the dermorphin progenitor sequence. Tyr-Ala-Phe-Gly-Tyr-Pro-Ser-Gly, flanked by Lys-Arg at the amino end and by Glu-Ala-Lys-Lys at the carboxyl end [Science (Wash. D. C.) 238:200-202 (1987)]. The D-Ala in position 2 in dermorphin is encoded by a usual Ala codon in the precursor sequence. Of the two prodermorphin molecules, one has a dermorphin copy replaced with a distinct heptapeptide same processing signals. Assuming the same pathway as for the release of dermorphin, processing of this precursor may yield, beside dermorphin, a copy of a new peptide, Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2. We have synthetized this peptide together with its (L-Met2)-counterpart and evaluated their respective opioid receptor selectivity in the mouse vas deferens and guinea pig ileum assays and in rat brain membrane binding assays. Overall, the data collected demonstrate that the putative prodermorphin product Tyr-D-Met-Phe-His-Leu-Met-Asp-NH2 named dermenkephalin, behaves as a potent delta opioid agonist exhibiting high affinity and high selectivity for the delta opioid receptor. Prodermorphin, thus, offers a surprising example of an opioid biosynthetic precursor that might simultaneously generate highly potent and fully selective agonists for the mu- (morphine) and the delta (enkephalin) opioid receptors, respectively. In addition, because dermenkephalin has no structural features in common with the sequence of all the hitherto known opioid peptides, it should be a useful tool for identifying conformational determinants for high affinity and selective binding of opioids to the delta receptor.

    Topics: Amino Acid Sequence; Analgesia; Animals; Binding, Competitive; Brain; Cell Membrane; Cerebral Ventricles; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Injections, Intraventricular; Kinetics; Male; Mice; Oligopeptides; Opioid Peptides; Pain; Rats; Receptors, Opioid; Receptors, Opioid, delta

1989
Opioid peptides. Partially modified retro-inverso dermorphin analogues. XIII.
    Farmaco (Societa chimica italiana : 1989), 1989, Volume: 44, Issue:11

    We studied the effect of partial retro-inverso modification of a selected peptide bond of dermorphin (H-Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2) related peptides. The drastic loss of mu-receptor affinity following introduction of retro-inverso peptide bond between Phe1-D-Ala2 in the new peptide analogues, emphasized the importance of this backbone in the dermorphin peptides.

    Topics: Amino Acid Sequence; Animals; Brain; Chromatography, High Pressure Liquid; Chromatography, Thin Layer; Endorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Guinea Pigs; In Vitro Techniques; Molecular Sequence Data; Oligopeptides; Opioid Peptides; Oxidation-Reduction; Receptors, Opioid

1989
Dermorphin gene sequence peptide with high affinity and selectivity for delta-opioid receptors.
    The Journal of biological chemistry, 1989, Feb-25, Volume: 264, Issue:6

    Skin of the frog Phyllomedusa sauvagei contains a cDNA sequence that codes for the selective mu-receptor peptide dermorphin and a new heptapeptide we have designated as dermorphin gene-associated peptide (DGAP). Investigation of the opioid receptor binding characteristics of synthetic DGAP and [D-Met2]DGAP revealed that the latter peptide had high affinity and selectivity for delta-type opioid receptors in rat brain synaptosomes. The IC50 values for DGAP on mu- and delta-receptors were only 28 microM and 670 nM, respectively, while that for [D-Met2]DGAP was 0.80 nM for delta-receptors and greater than 1 microM for mu-receptors yielding a very high delta selectivity ratio (SR) of 1345. In comparison, the SR values for [D-Ala2,D-Leu5]enkephalin, [D-Ser2,Leu5,Thr6]enkephalin, and [D-Pen2,5]enkephalin, ligands which are considered to be specific for delta-receptors, were 20, 42, and 301, respectively. Dermorphin, which contains a D-Ala2 residue and is a selective mu-receptor ligand (Lazarus, L.H., Guglietta, A., Wilson, W.E., Irons, B.J., and de Castiglione, R. (1989) J. Biol. Chem. 264, 354-362), exhibits a SR of 0.0055 similar to that for the conventional mu-agonist [D-Ala2,NMePhe4,Gly-ol]enkephalin (0.0040). This finding that frog skin cDNA contains the information to code for dermorphin and DGAP, or the presumed [D-Met2]DGAP molecule, which are among the most selective high affinity opioid ligands described for mu- and delta-receptors, may permit new insight into the design of future opioid receptor agonists and antagonists.

    Topics: Analgesics, Opioid; Animals; Binding, Competitive; Brain; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Enkephalin, Leucine-2-Alanine; Enkephalins; Oligopeptides; Opioid Peptides; Protein Conformation; Rats; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, mu; Synaptosomes

1989
Characterization of the receptor binding profile of (3H)-dermorphin in the rat brain.
    International journal of peptide and protein research, 1988, Volume: 32, Issue:6

    Amphibian skin synthesizes a variety of biologically active peptides. Of these, dermorphin (Tyr-D-Ala-Phe-Gly-Tyr-Pro-Ser-NH2) is an extraordinarily potent opioid peptide up to 1000 times more active than morphine in inducing analgesia after intracerebroventricular administration. Dermorphin has little in common with the sequence of all hitherto known mammalian opioid peptides and is unique in having a D-amino acid residue in position 2. Specific binding properties of tritium labeled dermorphin were characterized in the rat brain. Scatchard or Hill analysis of equilibrium measurements performed over a large range of concentrations revealed a single population of dermorphin binding sites with a Kd value of 0.46 nM. Dermorphin and the selective mu-receptor ligand (D-Ala2, MePhe4, Gly5-ol)-enkephalin (DAGO) had similar high potencies in competing with (3H)-dermorphin binding, whereas the inverse holds for the prototypical delta receptor ligand (D-Pen2, D-Pen5)-enkephalin (DPDPE), which exhibited a potency three orders of magnitude lower. Dermorphin was tested for its relative affinity to mu and delta binding sites by determining its potency in displacing (3H)-DAGO and (3H)-DPDPE from rat brain membrane preparations. Based on these comparisons, dermorphin exhibited a selectivity ratio Ki(DPDPE)/Ki(DAGO) = 100, a value almost identical to that of DAGO, this ligand being considered as the protypical mu-receptor probe. The high affinity and selectivity of (3H)-dermorphin together with its very low nonspecific binding make this peptide a useful tool for dissecting the role(s) of the mu-receptor(s).

    Topics: Analgesics, Opioid; Animals; Binding, Competitive; Brain; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Kinetics; Male; Oligopeptides; Opioid Peptides; Radioisotope Dilution Technique; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, Opioid, mu; Tritium

1988
Synthesis and activity profiles of new dermorphin-(1-4) peptide analogues.
    Journal of medicinal chemistry, 1987, Volume: 30, Issue:9

    A new series of 12 dermorphin tetrapeptides, W-Tyr-D-MetO-Phe-Xaa-Y (W = H, H2NC = (NH); Xaa = Gly, Sar, D-Ala; Y = OH, OCH3, NH2) were prepared by traditional methods in solution and tested for opioid activity. In binding studies based on displacement of mu, delta, and kappa opioid receptor selective radiolabels from guinea pig brain membranes, the new analogues showed a negligible affinity for the kappa binding site and a preference for mu- over delta-receptors with an evident dependence on N- and/or C-terminal modifications; H-Tyr-D-MetO-Phe-Gly-OCH3 was shown to be one of the most selective mu-receptor ligands reported to date. All these tetrapeptides display dose-related naloxone-reversible antinociceptive effects following intracerebroventricular (icv) or subcutaneous (sc) administrations in mice. In comparison to morphine, H-Tyr-D-MetO-Phe-Sar-NH2 and the guanidino derivative H2NC = (NH)-Tyr-D-MetO-Phe-Gly-NH2 showed lower affinity for mu, delta, and kappa sites but exceptionally stronger analgesia: respectively they are 560 and 1550 times as potent an analgesic as morphine. Among analogues tested after sc administration, H-Tyr-D-MetO-Phe-Sar-NH2 and H-Tyr-D-MetO-Phe-D-Ala-OH displayed the highest activities; they were respectively 22 and 30 times more potent than morphine on a molar basis. These results indicate that N- or C-terminal modifications and substitution at position 2 or 4 of dermorphin-(1-4) peptide do not only influence the affinity of the resulting analogues to opioid receptors but also may favorably alter their pharmacokinetic properties.

    Topics: Analgesics, Opioid; Animals; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine; Enkephalin, Leucine-2-Alanine; Enkephalins; Mice; Oligopeptides; Opioid Peptides; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, mu; Structure-Activity Relationship

1987