enkephalin--ala(2)-mephe(4)-gly(5)- has been researched along with binaltorphimine* in 3 studies
3 other study(ies) available for enkephalin--ala(2)-mephe(4)-gly(5)- and binaltorphimine
Article | Year |
---|---|
Antagonistic property of buprenorphine for putative epsilon-opioid receptor-mediated G-protein activation by beta-endorphin in pons/medulla of the mu-opioid receptor knockout mouse.
beta-Endorphin is a non-selective opioid peptide which binds mu-, delta- and putative epsilon (beta-endorphin-sensitive non-mu-, non-delta- and non-kappa(1)-)-opioid receptors. We have previously reported that beta-endorphin-produced G-protein activation is mediated by the stimulation of both mu- and putative epsilon-opioid receptors. The present study was designed to further characterize this putative epsilon-opioid receptor-mediated G-protein activation in the pons/medulla membrane obtained from mice lacking mu-opioid receptor, using a guanosine-5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPgammaS)-binding assay. beta-Endorphin and the mu-opioid receptor agonist [D-Ala(2),N-MePhe(4),Gly-ol(5)]enkephalin (DAMGO) increased the [(35)S]GTPgammaS binding in a concentration-dependent manner (0.001-10 microM), and at 10 microM beta-endorphin and DAMGO produced approximately 250 and 120% increases of [(35)S]GTPgammaS binding in the pons/medulla membrane obtained from wild-type mice, respectively. In the pons/medulla membrane obtained from mu-opioid receptor knockout mice, beta-endorphin-stimulated [(35)S]GTPgammaS binding was only partially attenuated and a more than 100% increase by 10 microM beta-endorphin still remained, while DAMGO failed to produce any increase in [(35)S]GTPgammaS binding. The residual increase in [(35)S]GTPgammaS binding by 10 microM beta-endorphin in mu-opioid receptor knockout mice was partially but significantly attenuated by the putative epsilon-opioid receptor partial agonist beta-endorphin (1-27), but not by the delta-opioid receptor antagonist naltrindole or the kappa(1)-receptor antagonist norbinaltorphimine. Furthermore, buprenorphine significantly attenuated the residual increase in [(35)S]GTPgammaS binding by 10 microM beta-endorphin in mu-opioid receptor knockout mice. The present results indicate that beta-endorphin activates G-protein by stimulation of putative epsilon-opioid receptors in the condition lacking the mu-opioid receptor, and buprenorphine acts as an antagonist for putative epsilon-opioid receptors in this condition. Topics: Animals; beta-Endorphin; Binding, Competitive; Buprenorphine; Cell Membrane; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Female; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Male; Medulla Oblongata; Mice; Mice, Knockout; Naltrexone; Narcotic Antagonists; Narcotics; Neurons; Peptide Fragments; Pons; Radioligand Assay; Receptors, Opioid; Receptors, Opioid, mu; Rhombencephalon; Sulfur Radioisotopes; Synaptic Transmission | 2002 |
Opioid peptide pharmacology and immunocytochemistry in an animal model of self-sustaining status epilepticus.
In a model of self-sustaining status epilepticus induced in rats by 30 min intermittent stimulation of the perforant path through chronically implanted electrodes, a decrease in dynorphin-like immunoreactivity in the dentate gyrus and CA3 was observed 3 h and 24 h after the induction of status epilepticus. Enkephalin-like immunoreactivity decreased 3 h but not 24 h after perforant path stimulation. Injection into the hilus of the dentate gyrus 10 min prior to stimulation of the kappa-receptor agonist dynorphin-A(1-13), the delta-receptor antagonists ICI-174864 and naltrindole, as well as i.p. injection of naloxone prevented the development of status epilepticus. Perihilar administration of the delta-agonist [D-Ser2]Leu-enkephalin-Thr6 or the kappa-antagonist nor-Binaltorphimine, but not of the mu-agonist [D-Ala2,N-Me-Phe4,Gly-ol5]-Enkephalin, facilitated the establishment of self-sustaining status epilepticus. Injection into the hilus of dynorphin-A(1-13) after the end of perforant path stimulation, stopped established status epilepticus, while administration of naloxone, naltrindole and ICI-174864 were ineffective. We conclude that kappa-opioids in the hippocampus counteract initiation and maintenance of status epilepticus, while delta-opioids promote initiation, but not maintenance of seizure activity. These data are important for the understanding the mechanisms which underlie initiation and maintenance of status epilepticus and for the development of new approaches for its effective management. Topics: Action Potentials; Analgesics; Analgesics, Opioid; Animals; Disease Models, Animal; Dynorphins; Electric Stimulation; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine; Enkephalins; Immunohistochemistry; Male; Naloxone; Naltrexone; Narcotic Antagonists; Neurons; Opioid Peptides; Peptide Fragments; Perforant Pathway; Rats; Rats, Wistar; Receptors, Opioid, delta; Receptors, Opioid, kappa; Status Epilepticus | 1999 |
The modulation of placental lactogen release by opioids: a role for extracellular calcium.
We previously reported that kappa opioids stimulated the release of human placental lactogen (hPL) from trophoblastic cells and that this effect was prevented by co-incubation with naloxone. We also reported that adenylate cyclase was not directly involved in this process. In order to understand the post-receptor events mediating hPL release by opioids in the human placenta, we studied the role of extracellular calcium. Human trophoblastic cells obtained by trypsin digestion were cultured for 48 h in Ham's F-10 medium supplemented with 10% fetal bovine serum (FBS), 200 U/ml penicillin, and 200 micrograms/ml streptomycin. 45Ca2+ influx was then measured by filtration on glass-fiber filters. We observed a time- and dose-dependent stimulation of 45Ca2+ influx by ethylketocyclazocine (EKC) with an EC50 of 0.5 nM and a maximal stimulation of 196% over control. This effect was completely blocked by naloxone, a non-specific opioid antagonist, and by nor-binaltorphimine, a specific kappa antagonist. We also demonstrated that U-50,488 (kappa agonist) had the same stimulatory effect as EKC (221 +/- 25% of control). D-Ala2,NMe-Phe4,Gly-ol5)-enkephalin (DAGO) (mu agonist) slightly stimulated Ca2+ influx (128 +/- 5% of control, p > 0.05) whereas D-Ser2,Leu,Thr6)-enkephalin (DSLET) (delta agonist) had no effect. Pre-incubation of trophoblastic cells with pertussis toxin (PTX) did not affect the EKC-induced 45Ca2+ influx, suggesting that this placental opiate effect is not coupled with PTX-sensitive G proteins.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Adenylate Cyclase Toxin; Analgesics; Calcium; Cells, Cultured; Dopamine; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine; Enkephalins; Ethylketocyclazocine; Gene Expression Regulation; Humans; Ionomycin; Naloxone; Naltrexone; Narcotics; Pertussis Toxin; Placental Lactogen; Pyrrolidines; Time Factors; Trophoblasts; Virulence Factors, Bordetella | 1993 |