enkephalin--ala(2)-mephe(4)-gly(5)- has been researched along with arachidonyl-2-chloroethylamide* in 2 studies
2 other study(ies) available for enkephalin--ala(2)-mephe(4)-gly(5)- and arachidonyl-2-chloroethylamide
Article | Year |
---|---|
Mu-opioid and CB1 cannabinoid receptors of the dorsal periaqueductal gray interplay in the regulation of fear response, but not antinociception.
Evidence indicates that periaqueductal gray matter (PAG) plays an important role in defensive responses and pain control. The activation of cannabinoid type-1 (CB1) or mu-opioid (MOR) receptors in the dorsal region of this structure (dPAG) inhibits fear and facilitates antinociception induced by different aversive stimuli. However, it is still unknown whether these two receptors work cooperatively in order to achieve these inhibitory actions. This study investigated the involvement and a likely interplay between CB1 and MOR receptors localized into the dPAG on the regulation of fear-like defensive responses and antinociception (evaluated in tail-flick test) evoked by dPAG chemical stimulation with N-methyl-d-aspartate (NMDA). Before the administration of NMDA, animals were first intra-dPAG injected with the CB1 agonist ACEA (0.5 pmol), or with the MOR agonist DAMGO (0.5 pmol) in combination with the respective antagonists AM251 (CB1 antagonist, 100 pmol) or CTOP (MOR antagonist, 1 nmol). To investigate the interplay between these receptors, microinjection of CTOP was combined with ACEA, or microinjection of AM251 was combined with DAMGO. Our results showed that both the intra-PAG treatments with ACEA or DAMGO inhibited NMDA-induced freezing expression, whereas only the treatment with DAMGO increased antinociception induced with NMDA, which are completely blocked by its respective antagonists. Interestingly, the inhibitory effects of ACEA or DAMGO on freezing was blocked by CTOP and AM251, respectively, indicating a functional interaction between these two receptors in the mediation of defensive behaviors. However, this cooperative interaction was not observed during the NMDA-induced antinociception. Our findings indicate that there is a cooperative action between the MOR and CB1 receptors within the dPAG and it is involved in the mediation of NMDA-induced defensive responses. Additionally, the MORs into the dPAG are involved in the modulation of the antinociceptive effects that follow a fear-like defense-reaction induced by dPAG chemical stimulation with NMDA. Topics: Analgesics, Opioid; Animals; Arachidonic Acids; Behavior, Animal; Cannabinoid Receptor Agonists; Cannabinoid Receptor Antagonists; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Excitatory Amino Acid Agonists; Fear; Freezing Reaction, Cataleptic; Male; Microinjections; N-Methylaspartate; Nociception; Pain; Pain Measurement; Periaqueductal Gray; Piperidines; Pyrazoles; Rats; Receptor, Cannabinoid, CB1; Receptors, Opioid, mu; Somatostatin | 2020 |
Different effects of opioid and cannabinoid receptor agonists on C-fiber-induced extracellular signal-regulated kinase activation in dorsal horn neurons in normal and spinal nerve-ligated rats.
Nerve injury results in neuropathic pain, a debilitating pain condition. Whereas cannabinoids are consistently shown to attenuate neuropathic pain, the efficacy of opioids is highly controversial. Molecular mechanisms underlying analgesic effects of opioids and cannabinoids are not fully understood. We have shown that the signaling molecule ERK (extracellular signal-regulated kinase) is activated by C-fiber stimulation in dorsal horn neurons and contributes to pain sensitization. In this study, we examined whether opioids and cannabinoids can affect C-fiber-induced ERK phosphorylation (pERK) in dorsal horn neurons in spinal cord slices from normal and spinal nerve-ligated rats. In normal control spinal slices, capsaicin induced a drastic pERK expression in superficial dorsal horn neurons, which was suppressed by morphine (10 microM), the selective mu-opioid receptor agonist DAMGO [[d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin (1 microM)], and the selective CB1 receptor ACEA agonist [arachidonyl-2'-chloroethylamide (5 microM)]. One week after spinal nerve ligation when neuropathic pain is fully developed, capsaicin induced less pERK expression in the injured L(5)-spinal segment. This pERK induction was not suppressed by morphine (10 microM) and DAMGO (1 microM) but was enhanced by high concentration of DAMGO (5 microM). In contrast, ACEA (10 microM) was still very effective in inhibiting capsaicin-induced pERK expression. In the adjacent L(4) spinal segment, both DAMGO and ACEA significantly suppressed pERK induction by capsaicin. These results indicate that, after nerve injury, opioids lose their capability to suppress C-fiber-induced spinal neuron activation in the injured L(5) but not in the intact L(4) spinal segment, whereas cannabinoids still maintain their efficacy. Topics: Animals; Arachidonic Acids; Cannabinoid Receptor Agonists; Capsaicin; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enzyme Activation; Extracellular Signal-Regulated MAP Kinases; Lumbosacral Region; Male; Mononeuropathies; Morphine; Phosphorylation; Posterior Horn Cells; Rats; Rats, Sprague-Dawley; Receptors, Opioid; Spinal Nerves | 2006 |