enkephalin--ala(2)-mephe(4)-gly(5)- has been researched along with 2--6--dimethyltyrosine* in 2 studies
2 other study(ies) available for enkephalin--ala(2)-mephe(4)-gly(5)- and 2--6--dimethyltyrosine
Article | Year |
---|---|
Discovery of a potent and efficacious peptide derivative for δ/μ opioid agonist/neurokinin 1 antagonist activity with a 2',6'-dimethyl-L-tyrosine: in vitro, in vivo, and NMR-based structural studies.
Multivalent ligands with δ/μ opioid agonist and NK1 antagonist activities have shown promising analgesic potency without detectable sign of toxicities, including motor skill impairment and opioid-induced tolerance. To improve their biological activities and metabolic stability, structural optimization was performed on our peptide-derived lead compounds by introducing 2',6'-dimethyl-L-tyrosine (Dmt) instead of Tyr at the first position. The compound 7 (Dmt-D-Ala-Gly-Phe-Met-Pro-Leu-Trp-NH-[3',5'-(CF(3))(2)-Bzl]) showed improved multivalent bioactivities compared to those of the lead compounds, had more than 6 h half-life in rat plasma, and had significant antinociceptive efficacy in vivo. The NMR structural analysis suggested that Dmt(1) incorporation in compound 7 induces the structured conformation in the opioid pharmacophore (N-terminus) and simultaneously shifts the orientation of the NK1 pharmacophore (C-terminus), consistent with its affinities and activities at both opioid and NK1 receptors. These results indicate that compound 7 is a valuable research tool to seek a novel analgesic drug. Topics: Amino Acid Sequence; Analgesics; Animals; Drug Discovery; Drug Stability; Guanosine 5'-O-(3-Thiotriphosphate); Guinea Pigs; Humans; Ileum; Magnetic Resonance Spectroscopy; Male; Mice; Micelles; Molecular Conformation; Neurokinin-1 Receptor Antagonists; Peptides; Rats; Receptors, Neurokinin-1; Receptors, Opioid, mu; Receptors, sigma; Structure-Activity Relationship; Tyrosine; Vas Deferens | 2011 |
Tolerance develops in spinal cord, but not in brain with chronic [Dmt1]DALDA treatment.
Previously, we reported that H-2',6'-dimethyltyrosine [Dmt(1)]-d-Arg-Phe-Lys-NH(2) (DALDA), an analogue of the naturally occurring opioid peptide dermorphin, is a highly potent and selective mu receptor agonist with low cross-tolerance to morphine. In the present study, we investigated the effect of treating mice chronically with [Dmt(1)]DALDA. The AD(50) of [Dmt(1)]DALDA (s.c.) increased eight-fold in animals given this drug chronically; in contrast, the AD(50) increased two-fold in mice chronically treated with morphine. The AD(50) of morphine (s.c.) in these [Dmt(1)]DALDA-treated animals was increased more than 120 times, while that of the more selective mu agonist [d-Ala(2)-MePhe(4)-Gly-ol(5)]enkephalin (DAMGO) given intrathecally was increased more than 240 times. However, the AD(50) of DAMGO given intracerebroventricularly was essentially the same in animals treated chronically with [Dmt(1)]DALDA as in naive animals. The dose of naloxone required to precipitate withdrawal in [Dmt(1)]DALDA-treated animals was 20 times lower than that in morphine-tolerant animals. Using real-time quantitative PCR, we found that expression of the mu opioid receptor, delta opioid receptor, preproenkephalin and preprodynorphin genes was upregulated in the brain by [Dmt(1)]DALDA treatment. No significant changes in expression of opioid receptor or opioid peptide genes were detected in the spinal cord of [Dmt(1)]DALDA-treated mice, nor in the brain or spinal cord of morphine-treated mice. We conclude that a high degree of tolerance to [Dmt(1)]DALDA develops in the spinal cord but not brain, and cannot be accounted for by changes in expression of opioid receptors or opioid peptides in these tissues. Topics: Animals; Brain; Dose-Response Relationship, Drug; Drug Tolerance; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Male; Mice; Mice, Inbred ICR; Oligopeptides; Pain Measurement; Spinal Cord; Tyrosine | 2004 |