enkephalin--ala(2)-mephe(4)-gly(5)- and 17-cyclopropylmethyl-6-7-didehydro-4-5-epoxy-5--guanidinyl-3-14-dihydroxyindolo(2--3--6-7)morphinan

enkephalin--ala(2)-mephe(4)-gly(5)- has been researched along with 17-cyclopropylmethyl-6-7-didehydro-4-5-epoxy-5--guanidinyl-3-14-dihydroxyindolo(2--3--6-7)morphinan* in 5 studies

Other Studies

5 other study(ies) available for enkephalin--ala(2)-mephe(4)-gly(5)- and 17-cyclopropylmethyl-6-7-didehydro-4-5-epoxy-5--guanidinyl-3-14-dihydroxyindolo(2--3--6-7)morphinan

ArticleYear
Characterization of BU09059: a novel potent selective κ-receptor antagonist.
    ACS chemical neuroscience, 2014, Mar-19, Volume: 5, Issue:3

    Kappa-opioid receptor (κ) antagonists are potential therapeutic agents for a range of psychiatric disorders. The feasibility of developing κ-antagonists has been limited by the pharmacodynamic properties of prototypic κ-selective antagonists; that is, they inhibit receptor signaling for weeks after a single administration. To address this issue, novel trans-(3R,4R)-dimethyl-4-(3-hydroxyphenyl) piperidine derivatives, based on JDTic, were designed using soft-drug principles. The aim was to determine if the phenylpiperidine-based series of κ-antagonists was amenable to incorporation of a potentially metabolically labile group, while retaining good affinity and selectivity for the κ-receptor. Opioid receptor binding affinity and selectivity of three novel compounds (BU09057, BU09058, and BU09059) were tested. BU09059, which most closely resembles JDTic, had nanomolar affinity for the κ-receptor, with 15-fold and 616-fold selectivity over μ- and δ-receptors, respectively. In isolated tissues, BU09059 was a potent and selective κ-antagonist (pA2 8.62) compared with BU09057 (pA2 6.87) and BU09058 (pA2 6.76) which were not κ-selective. In vivo, BU09059 (3 and 10 mg/kg) significantly blocked U50,488-induced antinociception and was as potent as, but shorter acting than, the prototypic selective κ-antagonist norBNI. These data show that a new JDTic analogue, BU09059, retains high affinity and selectivity for the κ-receptor and has a shorter duration of κ-antagonist action in vivo.

    Topics: Animals; Cell Line, Tumor; CHO Cells; Cricetulus; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Guanidines; Guinea Pigs; Humans; Ileum; In Vitro Techniques; Isoquinolines; Male; Mice; Mice, Inbred Strains; Molecular Structure; Morphinans; Naltrexone; Narcotic Antagonists; Nociception; Piperidines; Rats; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Tetrahydroisoquinolines; Vas Deferens

2014
Micro-opioid receptor activation in the basolateral amygdala mediates the learning of increases but not decreases in the incentive value of a food reward.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2011, Feb-02, Volume: 31, Issue:5

    The decision to perform, or not perform, actions known to lead to a rewarding outcome is strongly influenced by the current incentive value of the reward. Incentive value is largely determined by the affective experience derived during previous consumption of the reward-the process of incentive learning. We trained rats on a two-lever, seeking-taking chain paradigm for sucrose reward, in which responding on the initial seeking lever of the chain was demonstrably controlled by the incentive value of the reward. We found that infusion of the μ-opioid receptor antagonist, CTOP (d-Phe-Cys-Tyr-d-Trp-Orn-Thr-Pen-Thr-NH(2)), into the basolateral amygdala (BLA) during posttraining, noncontingent consumption of sucrose in a novel elevated-hunger state (a positive incentive learning opportunity) blocked the encoding of incentive value information normally used to increase subsequent sucrose-seeking responses. Similar treatment with δ [N, N-diallyl-Tyr-Aib-Aib-Phe-Leu-OH (ICI 174,864)] or κ [5'-guanidinonaltrindole (GNTI)] antagonists was without effect. Interestingly, none of these drugs affected the ability of the rats to encode a decrease in incentive value resulting from experiencing the sucrose in a novel reduced-hunger state. However, the μ agonist, DAMGO ([d-Ala2, NMe-Phe4, Gly5-ol]-enkephalin), appeared to attenuate this negative incentive learning. These data suggest that upshifts and downshifts in endogenous opioid transmission in the BLA mediate the encoding of positive and negative shifts in incentive value, respectively, through actions at μ-opioid receptors, and provide insight into a mechanism through which opiates may elicit inappropriate desire resulting in their continued intake in the face of diminishing affective experience.

    Topics: Amygdala; Animals; Conditioning, Operant; Drive; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine; Food; Guanidines; Male; Microinjections; Morphinans; Naltrexone; Narcotic Antagonists; Neuropsychological Tests; Rats; Rats, Long-Evans; Receptors, Opioid, kappa; Receptors, Opioid, mu; Reward; Somatostatin; Sucrose

2011
Endogenous dynorphin in epileptogenesis and epilepsy: anticonvulsant net effect via kappa opioid receptors.
    Brain : a journal of neurology, 2007, Volume: 130, Issue:Pt 4

    Neuropsychiatric disorders are one of the main challenges of human medicine with epilepsy being one of the most common serious disorders of the brain. Increasing evidence suggest neuropeptides, particularly the opioids, play an important role in epilepsy. However, little is known about the mechanisms of the endogenous opioid system in epileptogenesis and epilepsy. Therefore, we investigated the role of endogenous prodynorphin-derived peptides in epileptogenesis, acute seizure behaviour and epilepsy in prodynorphin-deficient mice. Compared with wild-type littermates, prodynorphin knockout mice displayed a significantly reduced seizure threshold as assessed by tail-vein infusion of the GABA(A) antagonist pentylenetetrazole. This phenotype could be entirely rescued by the kappa receptor-specific agonist U-50488, but not by the mu receptor-specific agonist DAMGO. The delta-specific agonist SNC80 decreased seizure threshold in both genotypes, wild-type and knockout. Pre-treatment with the kappa selective antagonist GNTI completely blocked the rescue effect of U-50488. Consistent with the reduced seizure threshold, prodynorphin knockout mice showed faster seizure onset and a prolonged time of seizure activity after intracisternal injection of kainic acid. Three weeks after local injection of kainic acid into the stratum radiatum CA1 of the dorsal hippocampus, prodynorphin knockout mice displayed an increased extent of granule cell layer dispersion and neuronal loss along the rostrocaudal axis of the ipsi- and partially also of the contralateral hippocampus. In the classical pentylenetetrazole kindling model, dynorphin-deficient mice showed significantly faster kindling progression with six out of eight animals displaying clonic seizures, while none of the nine wild-types exceeded rating 3 (forelimb clonus). Taken together, our data strongly support a critical role for dynorphin in the regulation of hippocampal excitability, indicating an anticonvulsant role of kappa opioid receptors, thereby providing a potential target for antiepileptic drugs.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics; Animals; Benzamides; Cell Count; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Epilepsy, Temporal Lobe; Guanidines; Hippocampus; Kindling, Neurologic; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Morphinans; Naltrexone; Nerve Degeneration; Piperazines; Protein Precursors; Receptors, Opioid, kappa; Synaptic Transmission; Time Factors

2007
The kappa-opioid antagonist GNTI reduces U50,488-, DAMGO-, and deprivation-induced feeding, but not butorphanol- and neuropeptide Y-induced feeding in rats.
    Brain research, 2001, Aug-03, Volume: 909, Issue:1-2

    Antagonists selective for either kappa- [e.g. nor-binaltorphimine (nor-BNI)] and mu- (e.g. beta-funaltrexamine) opioid receptors have previously been shown to reduce both kappa- and mu-opioid-induced feeding. In the present studies, the anorectic effects of GNTI, a newly synthesized antagonist selective for kappa-opioid receptors, were studied in rats. GNTI (0.032-0.32 nmol; i.c.v.), administered 15 min prior to food access, reduced feeding induced by the kappa-opioid agonist U50,488 (producing a 70% maximal decrease), the mu-opioid agonist DAMGO (90% maximal decrease), and 24 h acute food deprivation (60% maximal decrease). GNTI did not reduce the orexigenic effects of butorphanol, an agonist that binds to both kappa- and mu-opioid receptors, and neuropeptide Y (NPY). Taken together, these results suggest that GNTI is a potent anorectic agent and opioid antagonist in rats. Like nor-BNI, GNTI reduced feeding induced by both kappa- and mu-opioid agonists. However, unlike nor-BNI, GNTI did not alter the orexigenic effects of butorphanol or NPY. Given the selectivity of GNTI and its effectiveness in several of the present experiments, its potency, and its short duration of action compared to nor-BNI, GNTI may serve to be a useful tool to study behavioral effects mediated by kappa-opioid receptors.

    Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Analgesics, Opioid; Animals; Brain; Butorphanol; Drug Interactions; Eating; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Food Deprivation; Guanidines; Male; Morphinans; Naltrexone; Narcotic Antagonists; Narcotics; Neuropeptide Y; Rats; Rats, Sprague-Dawley; Receptors, Opioid, kappa

2001
5'-Guanidinonaltrindole, a highly selective and potent kappa-opioid receptor antagonist.
    European journal of pharmacology, 2000, May-12, Volume: 396, Issue:1

    5'-Guanidinonaltrindole (GNTI) possesses 5-fold greater opioid antagonist potency (K(e)=0.04 nM) and an order of magnitude greater selectivity (selectivity ratios >500) than the prototypical kappa-opioid receptor antagonist, norbinaltorphimine, in smooth muscle preparations. Binding and functional studies conducted on cloned human opioid receptors expressed in Chinese hamster ovarian (CHO) cells afforded pA(2) values that were comparable to the smooth muscle data. In view of the high selectivity and potency of GNTI, it is a potentially valuable pharmacological tool for opioid research.

    Topics: Animals; CHO Cells; Cricetinae; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, D-Penicillamine (2,5)-; Guanidines; Guinea Pigs; Humans; In Vitro Techniques; Ligands; Male; Membranes; Mice; Mice, Inbred ICR; Morphinans; Muscle, Smooth; Naltrexone; Receptors, Opioid, kappa

2000