enkephalin--ala(2)-mephe(4)-gly(5)- and 1-(3-chlorophenyl)piperazine

enkephalin--ala(2)-mephe(4)-gly(5)- has been researched along with 1-(3-chlorophenyl)piperazine* in 2 studies

Other Studies

2 other study(ies) available for enkephalin--ala(2)-mephe(4)-gly(5)- and 1-(3-chlorophenyl)piperazine

ArticleYear
Antinociception induced by opioid or 5-HT agonists microinjected into the anterior pretectal nucleus of the rat.
    Brain research, 1997, May-16, Volume: 757, Issue:1

    The changes in the latency for tail withdrawal in response to noxious heating of the skin induced by microinjection of opioid or serotonergic agonists into the anterior pretectal nucleus (APtN) was studied in rats. The mu-opioid agonist DAMGO (78 and 156 picomol), but not the delta-opioid agonist DADLE (70 and 140 pmol), the kappa-opioid agonist bremazocine (0.24 and 0.48 nanomol) or the sigma-opioid agonist N-allylnormetazocine (0.54 nanomol), produced a dose-dependent antinociceptive effect. The 5-HT1 agonist 5-carboxamidotryptamine (19 and 38 nanomol) and the 5-HT1B agonist, CGS 12066B (1.12 and 2.24 nanomol), but not the non-selective 5-HT agonist m-CPP (41 to 164 nanomol), 5-HT2 agonist alpha-methylserotonin (36 and 72 nanomol) and 5-HT3 agonist 2-methylserotonin (36 and 72 nanomol), produced a dose-dependent antinociceptive effect. These results indicate that the antinociceptive effects of opioid or serotonergic agonists microinjected into the APtN depend on drug interaction with local mu or 5-HT1B receptors, respectively.

    Topics: Analgesics; Animals; Benzomorphans; Brain; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine-2-Alanine; Enkephalins; Male; Microinjections; Pain; Phenazocine; Piperazines; Quinoxalines; Rats; Rats, Wistar; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Serotonin; Serotonin Receptor Agonists

1997
Synchronous GABA-mediated potentials and epileptiform discharges in the rat limbic system in vitro.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 1996, Jun-15, Volume: 16, Issue:12

    Application of 4-aminopyridine (4AP, 50 microM) to combined slices of adult rat hippocampus-entorhinal cortex-induced ictal and interictal epileptiform discharges, as well as slow field potentials that were abolished by the mu-opioid agonist [D-Ala2,N-Me-Phe4,Gly-ol5] enkephalin (DAGO, 10 microM) or the GABAA receptor antagonist bicuculline methiodide (BMI, 10 microM); hence, they represented synchronous GABA-mediated potentials. Ictal discharges originated in the entorhinal cortex and propagated to the hippocampus, whereas interictal activity of CA3 origin was usually recorded in the hippocampus. The GABA-mediated potentials had no fixed site of origin or modality of propagation; they closely preceded (0.2-5 sec) and thus appeared to initiate ictal discharges. Only ictal discharges were blocked by the antagonist of the NMDA receptor 3,3-(2-carboxypiperazine-4-yl)propyl-1-phosphonate (CPP, 10 microM), whereas the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 10 microM) abolished all epileptiform activities. The GABA-mediated potentials continued to occur synchronously in all regions even after concomitant application of CNQX and CPP. [K+]o elevations were recorded in the entorhinal cortex during the ictal discharge (peak values = 13.9 +/- 0.9 mM) and the synchronous GABA-mediated potentials (peak values = 4.2 +/- 0.1 mM); the latter increases were presumably attributable to postsynaptic GABAa-receptor activation because they were abolished by DAGO or BMI. Their role in initiating ictal activity was demonstrated by using DAGO, which abolished both GABA-mediated synchronous potentials and ictal discharges. These data indicate that NMDA-mediated ictal discharges induced by 4AP originate in the entorhinal cortex; such a conclusion is in line with clinical evidence obtained in temporal lobe epilepsy patients. 4AP also induces GABA-mediated potentials that spread within the limbic system when excitatory transmission is blocked and may play a role in initiating ictal discharge by increasing [K+]o.

    Topics: 4-Aminopyridine; 6-Cyano-7-nitroquinoxaline-2,3-dione; Analgesics; Animals; Disease Models, Animal; Electrophysiology; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Entorhinal Cortex; Epilepsy; Excitatory Amino Acid Antagonists; gamma-Aminobutyric Acid; Hippocampus; Limbic System; Male; Membrane Potentials; N-Methylaspartate; Nerve Fibers; Piperazines; Potassium; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Serotonin Receptor Agonists

1996