endothelin-1 has been researched along with tetrapentylammonium* in 2 studies
2 other study(ies) available for endothelin-1 and tetrapentylammonium
Article | Year |
---|---|
Visceral periadventitial adipose tissue regulates arterial tone of mesenteric arteries.
Periadventitial adipose tissue produces vasoactive substances that influence vascular contraction. Earlier studies addressed this issue in aorta, a vessel that does not contribute to peripheral vascular resistance. We tested the hypothesis that periadventitial adipose tissue modulates contraction of smaller arteries more relevant to blood pressure regulation. We studied mesenteric artery rings surrounded by periadventitial adipose tissue from adult male Sprague-Dawley rats. The contractile response to serotonin, phenylephrine, and endothelin I was markedly reduced in intact vessels compared with vessels without periadventitial fat. The contractile response to U46619 or depolarizing high K+-containing solutions (60 mmol/L) was similar in vessels with and without periadventitial fat. The K+ channel opener cromakalim induced relaxation of vessels precontracted by serotonin but not by U46619 or high K+-containing solutions (60 mmol/L), suggesting that K+ channels are involved. The intracellular membrane potential of smooth muscle cells was more hyperpolarized in intact vessels than in vessels without periadventitial fat. Both the anticontractile effect and membrane hyperpolarization of periadventitial fat were abolished by inhibition of delayed-rectifier K+ (K(v)) channels with 4-aminopyridine (2 mmol/L) or 3,4-diaminopyridine (1 mmol/L). Blocking other K+ channels with glibenclamide (3 micromol/L), apamin (1 micromol/L), iberiotoxin (100 nmol/L), tetraethylammonium ions (1 mmol/L), tetrapentylammonium ions (10 micromol/L), or Ba2+ (3 micromol/L) had no effect. Longitudinal removal of half the perivascular tissue reduced the anticontractile effect of fat by almost 50%, whereas removal of the endothelium had no effect. We suggest that visceral periadventitial adipose tissue controls mesenteric arterial tone by inducing vasorelaxation via K(v) channel activation in vascular smooth muscle cells. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; 4-Aminopyridine; Adipose Tissue; Amifampridine; Animals; Apamin; Barium; Cromakalim; Delayed Rectifier Potassium Channels; Endothelin-1; Glyburide; Male; Mesenteric Artery, Superior; Peptides; Phenylephrine; Potassium; Potassium Channel Blockers; Potassium Channels, Voltage-Gated; Quaternary Ammonium Compounds; Rats; Rats, Sprague-Dawley; Serotonin; Tetraethylammonium; Vascular Resistance; Vasodilation; Viscera | 2004 |
Contractile and relaxant effects of tetrapentylammonium ions in rat isolated mesenteric artery.
Both contractile and relaxant responses to tetrapentylammonium ions (TPA+) were studied in rat isolated mesenteric artery. TPA+ (5-10 micromol/l) caused a sustained increase of muscle tension. The contractile effect of TPA+ (10 micromol/l) was dependent upon the presence of extracellular Ca2+ but independent of the presence of endothelium. TPA+ (10-50 micromol/l) induced biphasic contraction, and the amplitude of peak and sustained tension decreased with increasing TPA+ concentration. TPA+ (100-300 micromol/l) only produced monophasic contraction. TPA+ (50 micromol/l) abolished the transient contraction induced by caffeine (10 mmol/l) or phenylephrine (1 micromol/l) in the absence of extracellular Ca2+. Nifedipine and verapamil concentration-dependently reduced the TPA+-induced contraction with respective IC50 values of 1.34 +/- 0. 24 and 9.46 +/- 1.36 nmol/l, these values were similar to 1.35 +/- 0. 21 and 16.07 +/- 1.71 nmol/l, respectively, for the inhibitory effects of nifedipine and verapamil on the high K+ (60 mmol/l)-induced contraction. TPA+ (>10 micromol/l) concentration-dependently reduced the phenylephrine (1 micromol/l)-, U46619 (30 nmol/l)-, endothelin I (10 nmol/l)- and high K+ (60 mmol/l)-induced sustained tension with respective IC50 values of 53. 7 +/- 9.5, 31.9 +/- 5.3, 30.9 +/- 3.4 and 20.9 +/- 2.8 micromol/l. The present results indicate that TPA+ at low concentrations could contract the arterial smooth muscle probably through promoting Ca2+ influx. At higher concentrations (>20 micromol/l), TPA+ relaxes arterial smooth muscle probably through inhibition of both nifedipine-sensitive Ca+ channels and internal Ca2+ release. TPA+, unlike other quaternary ammonium ions, could therefore act at multiple sites in arterial smooth muscle. Topics: 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid; Animals; Calcium Channel Blockers; Endothelin-1; Endothelium, Vascular; In Vitro Techniques; Male; Mesenteric Arteries; Muscle Contraction; Muscle Relaxation; Muscle, Smooth, Vascular; Nifedipine; Phenylephrine; Potassium; Quaternary Ammonium Compounds; Rats; Rats, Sprague-Dawley; Vasoconstrictor Agents; Verapamil | 1998 |