endothelin-1 has been researched along with procyanidin* in 5 studies
1 trial(s) available for endothelin-1 and procyanidin
Article | Year |
---|---|
Consumption of a polyphenol-rich grape-wine extract lowers ambulatory blood pressure in mildly hypertensive subjects.
Polyphenols in grape and wine have been suggested to contribute to the cardiovascular health benefits of the Mediterranean lifestyle. The reported effects of grape products on blood pressure (BP) remain, however, equivocal. In a double-blind placebo controlled crossover study, the effect of two grape extracts on BP and vascular function was assessed in 60 untreated, mildly hypertensive subjects after four weeks intervention. Both extracts (grape-red wine and grape alone) had high concentrations of anthocyanins and flavonols, but the grape alone was relatively poor in catechins and procyanidins. Parameters measured included ambulatory and office BP, flow-mediated vasodilation, arterial distensibility, platelet function and plasma lipoproteins. Results showed that 24-hour ambulatory systolic/diastolic BPs were significantly lower in the grape-wine extract intervention (135.9 ± 1.3/84.7 ± 0.8 mmHg; mean ± SEM) compared to placebo (138.9 ± 1.3/86.6 ± 1.2 mmHg), predominantly during daytime. Plasma concentrations of the vasoconstrictor endothelin-1 decreased by 10%, but other measures of vascular function were not affected. Grape juice extract alone had no effect on BP or any measures of vascular function. Polyphenol-rich food products, and may be specifically catechins and procyanidins, may thus help sustain a healthy BP and contribute to the healthy Mediterranean lifestyle. Topics: Adult; Aged; Anthocyanins; Biflavonoids; Blood Pressure; Catechin; Cross-Over Studies; Double-Blind Method; Endothelin-1; Female; Flavonols; Humans; Hypertension; Lipoproteins; Male; Middle Aged; Plant Extracts; Platelet Function Tests; Polyphenols; Proanthocyanidins; Vascular Stiffness; Vasodilation; Vitis; Wine | 2015 |
4 other study(ies) available for endothelin-1 and procyanidin
Article | Year |
---|---|
Regulation of vascular endothelial function by procyanidin-rich foods and beverages.
Flavonoid-rich diets are associated with a lower mortality from cardiovascular disease. This has been linked to improvements in endothelial function. However, the specific flavonoids, or biologically active metabolites, conferring these beneficial effects have yet to be fully defined. In this experimental study of the effect of flavonoids on endothelial function cultured endothelial cells have been used as a bioassay with endothelin-1 (ET-1) synthesis being measured an index of the response. Evaluation of the relative effects of extracts of cranberry juice compared to apple, cocoa, red wine, and green tea showed inhibition of ET-1 synthesis was dependent primarily on their oligomeric procyanidin content. Procyanidin-rich extracts of cranberry juice triggered morphological changes in endothelial cells with reorganization of the actin cytoskeleton and increased immunostaining for phosphotyrosine residues. These actions were independent of antioxidant activity. Comparison of the effects of apple procyanidin monomers through heptamer showed a clear structure-activity relationship. Although monomer, dimer, and trimer had little effect on ET-1 synthesis, procyanidin tetramer, pentamer, hexamer, and heptamer produced concentration-dependent decreases with IC(50) values of 5.4, 1.6, 0.9, and 0.7 microM, respectively. Levels of ET-1 mRNA showed a similar pattern of decreases, which were inversely correlated with increased expression of Kruppel-like factor 2 (KLF2), a key endothelial transcription factor with a broad range of antiatherosclerotic actions including suppression of ET-1 synthesis. Future investigations of procyanidin-rich products should assess the role KLF2 induction plays in the beneficial vascular effects of high flavonoid consumption. Topics: Animals; Beverages; Biflavonoids; Cacao; Catechin; Cattle; Cells, Cultured; Endothelial Cells; Endothelin-1; Food, Organic; Gene Expression Regulation; Kruppel-Like Transcription Factors; Malus; Molecular Structure; Plant Extracts; Proanthocyanidins; Structure-Activity Relationship | 2010 |
Oenology: red wine procyanidins and vascular health.
Regular, moderate consumption of red wine is linked to a reduced risk of coronary heart disease and to lower overall mortality, but the relative contribution of wine's alcohol and polyphenol components to these effects is unclear. Here we identify procyanidins as the principal vasoactive polyphenols in red wine and show that they are present at higher concentrations in wines from areas of southwestern France and Sardinia, where traditional production methods ensure that these compounds are efficiently extracted during vinification. These regions also happen to be associated with increased longevity in the population. Topics: Aged; Biflavonoids; Catechin; Cells, Cultured; Endothelin-1; Endothelium, Vascular; Female; France; Humans; Longevity; Male; Proanthocyanidins; Protective Agents; Vascular Diseases; Wine | 2006 |
The procyanidin-induced pseudo laminar shear stress response: a new concept for the reversal of endothelial dysfunction.
Reduced endothelium-dependent vasodilator responses with increased synthesis of ET-1 (endothelin-1) are characteristics of endothelial dysfunction in heart failure and are predictive of mortality. Identification of treatments that correct these abnormalities may have particular benefit for patients who become refractory to current regimens. Hawthorn preparations have a long history in the treatment of heart failure. Therefore we tested their inhibitory effects on ET-1 synthesis by cultured endothelial cells. These actions were compared with that of GSE (grape seed extract), as the vasoactive components of both these herbal remedies are mainly oligomeric flavan-3-ols called procyanidins. This showed extracts of hawthorn and grape seed were equipotent as inhibitors of ET-1 synthesis. GSE also produced a potent endothelium-dependent vasodilator response on preparations of isolated aorta. Suppression of ET-1 synthesis at the same time as induction of endothelium-dependent vasodilation is a similar response to that triggered by laminar shear stress. Based on these results and previous findings, we hypothesize that through their pharmacological properties procyanidins stimulate a pseudo laminar shear stress response in endothelial cells, which helps restore endothelial function and underlies the benefit from treatment with hawthorn extract in heart failure. Topics: Animals; Biflavonoids; Catechin; Cattle; Cells, Cultured; Crataegus; Dose-Response Relationship, Drug; Endothelin-1; Endothelium, Vascular; Humans; Phytotherapy; Plant Extracts; Proanthocyanidins; Rats; Stress, Mechanical; Vasodilation; Vitis | 2004 |
Procyanidins from grape seeds protect endothelial cells from peroxynitrite damage and enhance endothelium-dependent relaxation in human artery: new evidences for cardio-protection.
The peroxynitrite scavenging ability of Procyanidins from Vitis vinifera L. seeds was studied in homogeneous solution and in human umbilical endothelial cells (EA.hy926 cell line) using 3-morpholinosydnonimine (SIN-1) as peroxynitrite generator. In homogeneous phase procyanidins dose-dependently inhibited 2',7'-dichloro-dihydrofluorescein (DCFH) oxidation induced by SIN-1 with an IC50 value of 0.28 microM. When endothelial cells (EC) were exposed to 5 mM SIN-1, marked morphological alterations indicating a necrotic cell death (cell viability reduced to 16 +/- 2.5%) were observed. Cell damage was suppressed by procyanidins, with a minimal effective concentration of 1 microM (cell morphology and integrity completely recovered at 20 microM). Cellular localization of procyanidins in EC was confirmed using a new staining procedure and site-specific peroxyl radical inducers: AAPH and cumene hydroperoxide (CuOOH). Endothelial cells (EC) pre-incubated with procyanidins (20 microM) and exposed to FeCl3/K3Fe(CN)6 showed a characteristic blue staining, index of a site-specific binding of procyanidins to EC. Procyanidins dose-dependently inhibit the AAPH induced lipid oxidation and reverse the consequent loss of cell viability, but were ineffective when oxidation was driven at intracellular level (CuOOH). This demonstrates that the protective effect is due to their specific binding to the outer surface of EC thus to quench exogenous harmful radicals. Procyanidins dose-dependently relaxed human internal mammary aortic (IMA) rings (with intact endothelium) pre-contracted with norepinephrine (NE), showing a maximal vasorelaxant effect (85 +/- 9%) at 50 microM (catechin: 18 +/- 2% relaxation at 50 microM). This effect was completely abolished when IMA-rings were de-endothelized and when IMA-rings with intact endothelium were pretreated with L-NMMA or with the soluble guanylate cyclase inhibitor, ODQ. Pre-incubation with indomethacin reduces (by almost 50%) the vasodilating effect of procyanidins, indicating the involvement also of a COX-dependent mechanism. This was confirmed in another set of experiments, where procyanidins dose-dependently stimulate the prostacyclin (PGI2) release, reaching a plateau between 25 and 50 microM. Finally, pre-incubation of IMA-rings with procyanidins (from 6.25 to 25 microM) resulted in a dose-dependent prevention of the endothelin-1 (ET-1) vasoconstriction. The ability of procyanidins to prevent peroxynitrite attack to vascular cells, by Topics: 6-Ketoprostaglandin F1 alpha; Antioxidants; Biflavonoids; Catechin; Cell Survival; Cells, Cultured; Endothelin-1; Endothelium; Endothelium, Vascular; Fluoresceins; Fluorescent Dyes; Free Radicals; Humans; In Vitro Techniques; Lipid Peroxidation; Mammary Arteries; Molsidomine; Muscle Relaxation; Muscle, Smooth, Vascular; Nitric Oxide; Peroxynitrous Acid; Proanthocyanidins; Seeds; Vasoconstriction; Vitis | 2003 |