endothelin-1 and peroxynitric-acid

endothelin-1 has been researched along with peroxynitric-acid* in 2 studies

Other Studies

2 other study(ies) available for endothelin-1 and peroxynitric-acid

ArticleYear
Role for endothelin-1-induced superoxide and peroxynitrite production in rebound pulmonary hypertension associated with inhaled nitric oxide therapy.
    Circulation research, 2001, Aug-17, Volume: 89, Issue:4

    Our previous studies have demonstrated that inhaled nitric oxide (NO) decreases nitric oxide synthase (NOS) activity in vivo and that this inhibition is associated with rebound pulmonary hypertension upon acute withdrawal of inhaled NO. We have also demonstrated that inhaled NO elevates plasma endothelin-1 (ET-1) levels and that pretreatment with PD156707, an ETA receptor antagonist, blocks the rebound hypertension. The objectives of this study were to further elucidate the role of ET-1 in the rebound pulmonary hypertension upon acute withdrawal of inhaled NO. Inhaled NO (40 ppm) delivered to thirteen 4-week-old lambs decreased NOS activity by 36.2% in control lambs (P<0.05), whereas NOS activity was preserved in PD156707-treated lambs. When primary cultures of pulmonary artery smooth muscle cells were exposed to ET-1, superoxide production increased by 33% (P<0.05). This increase was blocked by a preincubation with PD156707. Furthermore, cotreatment of cells with ET-1 and NO increased peroxynitrite levels by 26% (P<0.05), whereas preincubation of purified human endothelial nitric oxide synthase (eNOS) protein with peroxynitrite generated a nitrated enzyme with 50% activity relative to control (P<0.05). Western blot analysis of peripheral lung extracts obtained after 24 hours of inhaled NO revealed a 90% reduction in 3-nitrotyrosine residues (P<0.05) in PD156707-treated lambs. The nitration of eNOS was also reduced by 40% in PD156707-treated lambs (P<0.05). These data suggest that the reduction of NOS activity associated with inhaled NO therapy may involve ETA receptor-mediated superoxide production. ETA receptor antagonists may prevent rebound pulmonary hypertension by protecting endogenous eNOS activity during inhaled NO therapy.

    Topics: Administration, Inhalation; Animals; Blotting, Western; Cells, Cultured; Dioxoles; Disease Models, Animal; Endothelin Receptor Antagonists; Endothelin-1; Enzyme Activation; Humans; Hypertension, Pulmonary; Lung; Microscopy, Fluorescence; Muscle, Smooth, Vascular; Nitrates; Nitric Oxide; Nitric Oxide Donors; Nitric Oxide Synthase; Nitric Oxide Synthase Type III; Pulmonary Artery; Receptor, Endothelin A; Secondary Prevention; Sheep; Superoxides; Tyrosine

2001
Administration of SIN-1 induces guinea pig airway hyperresponsiveness through inactivation of airway neutral endopeptidase.
    International archives of allergy and immunology, 1999, Volume: 120, Issue:4

    Peroxynitrite plays an important role in the pathogenesis of airway inflammation. We have already found that peroxynitrite may contribute to decreased beta(2)-adrenoceptor responses in airway smooth muscle. However, it is not known whether peroxynitrite can alter neutral endopeptidase (EC 3.4.24.11; NEP) activity in the airways. This study was designed to determine whether peroxynitrite induces airway hyperresponsiveness to substance P (SP) and endothelin-1 (ET-1) through the inactivation of airway NEP.. We examined whether the administration of S-morpholinosydnonimine (SIN-1), a compound that releases peroxynitrite, increased bronchoconstrictor responses to SP and ET-1 in anesthetized guinea pigs. In addition, we assayed NEP activity in the airways of SIN-1-exposed guinea pigs.. Though SIN-1 (10(-7) M) alone had no effect on pulmonary resistance, pretreatment with SIN-1 significantly enhanced SP- and ET-1-induced bronchoconstriction. Pretreatment with phosphoramidon, an NEP inhibitor, also enhanced SP- and ET-1-induced bronchoconstriction. However, simultaneous administration of phosphoramidon and SIN-1 had no additive effect on SP- and ET-1-induced bronchoconstriction. Peroxynitrite formation by SIN-1 was completely inhibited by N-acetylcysteine (NAC) and glutathione (GSH) in vitro, and pretreatment with NAC and GSH significantly reversed the potentiation by SIN-1 of SP-induced bronchoconstriction. In addition, the NEP activity of the trachea after SIN-1 exposure was significantly reduced compared to the level in control guinea pigs (solvent for SIN-1: 30.0+/-4.2 fmol.min(-1).mg tissue(-1); 10(-7) M SIN-1; 15.5+/-4.5 fmol.min(-1).mg tissue(-1), p<0.05).. These findings suggest that peroxynitrite induces airway hyperresponsiveness to SP and ET-1 through the inactivation of airway NEP, and that peroxynitrite is an important mediator of the alterations in airway functions.

    Topics: Animals; Bronchial Hyperreactivity; Bronchoconstriction; Endothelin-1; Enzyme Activation; Glycopeptides; Guinea Pigs; Male; Molsidomine; Neprilysin; Nitrates; Oxidants; Protease Inhibitors; Respiratory System; Substance P; Trachea; Vasodilator Agents

1999