endothelin-1 has been researched along with lysophosphatidic-acid* in 9 studies
1 review(s) available for endothelin-1 and lysophosphatidic-acid
Article | Year |
---|---|
Transactivation of Epidermal Growth Factor Receptor by G Protein-Coupled Receptors: Recent Progress, Challenges and Future Research.
Both G protein-coupled receptors (GPCRs) and receptor-tyrosine kinases (RTKs) regulate large signaling networks, control multiple cell functions and are implicated in many diseases including various cancers. Both of them are also the top therapeutic targets for disease treatment. The discovery of the cross-talk between GPCRs and RTKs connects these two vast signaling networks and complicates the already complicated signaling networks that regulate cell signaling and function. In this review, we focus on the transactivation of epidermal growth factor receptor (EGFR), a subfamily of RTKs, by GPCRs. Since the first report of EGFR transactivation by GPCR, significant progress has been made including the elucidation of the mechanisms underlying the transactivation. Here, we first provide a basic picture for GPCR, EGFR and EGFR transactivation by GPCR. We then discuss the progress made in the last five years and finally provided our view of the future challenge and future researches needed to overcome these challenges. Topics: Animals; Cell Line; Endothelin-1; ErbB Receptors; Fibroblasts; Humans; Lysophospholipids; Rats; Receptor Cross-Talk; Receptors, G-Protein-Coupled; Signal Transduction; Thrombin; Transcriptional Activation | 2016 |
8 other study(ies) available for endothelin-1 and lysophosphatidic-acid
Article | Year |
---|---|
Role of lysophosphatidic acid in vascular smooth muscle cell proliferation.
Lysophosphatidic acid (LPA) is an important lipid molecule for signal transduction in cell proliferation. Although the effects of LPA on vascular smooth muscle (VSM) cell growth have been reported previously, the underlying mechanisms of its action are not fully understood. The present study was undertaken to investigate the effects of some inhibitors of different protein kinases and other molecular targets on LPA-induced DNA synthesis as well as gene expression in the aortic VSM cells. The DNA synthesis was studied by the [ Topics: Animals; Casein Kinase II; Cell Line; Cell Proliferation; Endothelin-1; Gene Expression Regulation, Enzymologic; Lysophospholipids; Muscle, Smooth, Vascular; Protein Kinase C; Rats; Receptors, Lysophosphatidic Acid; Ribosomal Protein S6 Kinases, 70-kDa; RNA, Messenger; Type C Phospholipases | 2020 |
Lysophosphatidic acid signaling protects pulmonary vasculature from hypoxia-induced remodeling.
Lysophosphatidic acid (LPA) is a bioactive lipid molecule produced by the plasma lysophospholipase D enzyme autotaxin that is present at ≥100 nmol/L in plasma. Local administration of LPA promotes systemic arterial remodeling in rodents. To determine whether LPA contributes to remodeling of the pulmonary vasculature, we examined responses in mice with alterations in LPA signaling and metabolism.. Enpp2(+/-) mice, which are heterozygous for the autotaxin-encoding gene and which have reduced expression of autotaxin/lysophospholipase D and approximately half normal plasma LPA, were hyperresponsive to hypoxia-induced vasoconstriction and remodeling, as evidenced by the development of higher right ventricular (RV) systolic pressure, greater decline in peak flow velocity across the pulmonary valve, and a higher percentage of muscularized arterioles. Mice lacking LPA(1) and LPA(2), 2 LPA receptors abundantly expressed in the vasculature, also had enhanced hypoxia-induced pulmonary remodeling. With age, Lpar1(-/-)2(-/-) mice spontaneously developed elevated RV systolic pressure and RV hypertrophy that was not observed in Lpar1(-/-) mice or Lpar2(-/-) mice. Expression of endothelin-1, a potent vasoconstrictor, was elevated in lungs of Lpar1(-/-)2(-/-) mice, and expression of endothelin(B) receptor, which promotes vasodilation and clears endothelin, was reduced in Enpp2(+/-) and Lpar1(-/-)2(-/-) mice.. Our findings indicate that LPA may negatively regulate pulmonary vascular pressure through LPA(1) and LPA(2) receptors and that in the absence of LPA signaling, upregulation in the endothelin system favors remodeling. Topics: Animals; Blood Pressure; Endothelin-1; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Lysophospholipids; Mice; Mice, Inbred BALB C; Mice, Knockout; Phosphoric Diester Hydrolases; Pulmonary Artery; Receptors, Lysophosphatidic Acid; Signal Transduction | 2012 |
Lysophosphatidic acid pretreatment prevents micromolar atorvastatin-induced endothelial cell death and ensures the beneficial effects of high-concentration statin therapy on endothelial gene expression.
Because of the pleiotropic effects of statins, it may potentially be used as a locoregional adjuvant in vascular revascularization, tissue engineering, and regenerative procedures. Electron probe X-ray microanalyses and oligonucleotide microarrays were used to identify the global effects of micromolar concentrations of atorvastatin on the gene expression and cell viability of endothelial cells in different states of lysophosphatidic acid (LPA)-induced activation. Treatment with 1-μM atorvastatin for 24 hours significantly reduced the viability of human vascular endothelial cells (HUVECs). However, the same treatment of LPA-preactivated HUVECs produced elevated cell viability levels and an optimal vascular gene expression profile, including endothelial nitric oxide synthase overexpression, endothelin-1 repression, an anti-inflammatory genetic pattern, and upregulation of molecules involved in maintaining the endothelial barrier (vascular endothelial cadherin, claudin 5, tight junction protein 1, integrin β4). The atorvastatin treatment also produced a repression of microRNA 21 and genes involved in cell proliferation and neointimal formation (vascular endothelial growth factor [VEGF] A, VEGF receptor 1, VEGFC). Results obtained suggest that micromolar atorvastatin therapy can enhance global endothelial function, but its effects on cell viability vary according to the baseline state of cell activation (preactivated, postactivated, or not activated). Preactivation with LPA protects HUVECs against atorvastatin-induced apoptosis and delivers optimal levels of cell viability and functionality. Topics: Apoptosis; Atorvastatin; Cell Death; Cell Proliferation; Cell Survival; Cells, Cultured; Dose-Response Relationship, Drug; Endothelin-1; Gene Expression Regulation; Heptanoic Acids; Human Umbilical Vein Endothelial Cells; Humans; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Lysophospholipids; Nitric Oxide Synthase Type III; Oligonucleotide Array Sequence Analysis; Pyrroles; RNA | 2012 |
Neural tube defects and impaired neural progenitor cell proliferation in Gbeta1-deficient mice.
Heterotrimeric G proteins are well known for their roles in signal transduction downstream of G protein-coupled receptors (GPCRs), and both Galpha subunits and tightly associated Gbetagamma subunits regulate downstream effector molecules. Compared to Galpha subunits, the physiological roles of individual Gbeta and Ggamma subunits are poorly understood. In this study, we generated mice deficient in the Gbeta1 gene and found that Gbeta1 is required for neural tube closure, neural progenitor cell proliferation, and neonatal development. About 40% Gbeta1(-/-) embryos developed neural tube defects (NTDs) and abnormal actin organization was observed in the basal side of neuroepithelium. In addition, Gbeta1(-/-) embryos without NTDs showed microencephaly and died within 2 days after birth. GPCR agonist-induced ERK phosphorylation, cell proliferation, and cell spreading, which were all found to be regulated by Galphai and Gbetagamma signaling, were abnormal in Gbeta1(-/-) neural progenitor cells. These data indicate that Gbeta1 is required for normal embryonic neurogenesis. Topics: Animals; Brain; Cell Proliferation; Down-Regulation; Embryo, Mammalian; Endothelin-1; Extracellular Signal-Regulated MAP Kinases; Gene Expression Regulation, Developmental; GTP-Binding Protein beta Subunits; Heterotrimeric GTP-Binding Proteins; Lysophospholipids; Mice; Mice, Knockout; Mutagenesis, Insertional; Neural Tube Defects; Neurogenesis; Neurons; Phosphorylation; Sphingosine; Stem Cells | 2010 |
Adenosine induces loss of actin stress fibers and inhibits contraction in hepatic stellate cells via Rho inhibition.
The Rho/ROCK pathway is activated in differentiated hepatic stellate cells (HSCs) and is necessary for assembly of actin stress fibers, contractility, and chemotaxis. Despite the importance of this pathway in HSC biology, physiological inhibitors of the Rho/ROCK pathway in HSCs are not known. We demonstrate that adenosine induces loss of actin stress fibers in the LX-2 cell line and primary HSCs in a manner indistinguishable from Rho/ROCK inhibition. Loss of actin stress fibers occurs via the A2a receptor at adenosine concentrations above 10 muM, which are present during tissue injury. We further demonstrate that loss of actin stress fibers is due to a cyclic adenosine monophosphate, protein kinase A-mediated pathway that results in Rho inhibition. Furthermore, a constitutively active Rho construct can inhibit the ability of adenosine to induce loss of actin stress fibers. Actin stress fibers are required for HSC contraction, and we demonstrate that adenosine inhibits endothelin-1 and lysophosphatidic acid-mediated HSC contraction. We propose that adenosine is a physiological inhibitor of the Rho pathway in HSCs with functional consequences, including loss of HSC contraction. Topics: Adenosine; Adenosine-5'-(N-ethylcarboxamide); Animals; Cell Line; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Endothelin-1; Hepatic Stellate Cells; Humans; Lysophospholipids; Male; Mice; Rats; Receptor, Adenosine A2A; rho-Associated Kinases; Signal Transduction; Stress Fibers | 2009 |
Effect of inhibitors of mitogen-activated protein kinase kinase on alpha(1B)-adrenoceptor phosphorylation.
1 Mitogen-activated protein kinases mediate hormone/neurotransmitter action on proliferation and differentiation and participate in receptor regulation. The effect of inhibitors of mitogen-activated kinase kinase (MEK) on alpha(1B)-adrenoceptor phosphorylation state and function was studied using different cell lines. It was observed that at nanomolar concentrations the MEK inhibitors, PD98059 (2'-amino-3'-methoxyflavone) and UO126 [1,4-(diamino-2,3-dicyano/1,4-bis-(2-aminophenylthio)-butadiene], increased alpha(1B)-adrenoceptor phosphorylation and diminished the functional response of this receptor to noradrenaline. These agents did not alter the action of lysophosphatidic acid. 2 Staurosporine (IC(50) approximately 0.8 nm) (a general protein kinase inhibitor) and bis-indolyl-maleimide I (IC(50) approximately 200 nm) (a selective protein kinase C inhibitor) inhibited PD98059-induced alpha(1B)-adrenoceptor phosphorylation. In contrast, neither wortmannin (phosphoinositide 3-kinase inhibitor) nor genistein (protein tyrosine kinase inhibitor) had any effect. The data suggest the possibility that MEK might exert control on the activity of the enzymes that regulate receptor phosphorylation, such as G-protein-coupled receptor kinases, protein kinase C or serine/threonine protein phosphatases. 3 Coimmunoprecipitation studies showed a constant association of total extracellular signal-regulated kinase 2 (ERK2) with alpha(1B)-adrenoceptors. Association of phospho-ERK 1/2 to alpha(1B)-adrenoceptors increased not only in response to agonist but also in response to agents that increase alpha(1B)-adrenoceptor and ERK1/2 phosphorylation [such as endothelin-1, phorbol 12-myristate-13-acetate (PMA) and epidermal growth factor (EGF)]; not surprisingly, PD98059 decreased this effect. 4 Our data show that blockade of MEK activity results in increased alpha(1B)-adrenoceptor phosphorylation, diminished adrenoceptor function and perturbation of receptor-ERK1/2 interaction. Topics: Androstadienes; Animals; Butadienes; Calcium Signaling; Cell Line; Cricetinae; Endothelin-1; Epidermal Growth Factor; Flavonoids; Genistein; Humans; Indoles; Lysophospholipids; Maleimides; MAP Kinase Kinase 2; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Mitogen-Activated Protein Kinase Kinases; Nitriles; Norepinephrine; Phosphorylation; Protein Kinase Inhibitors; Rats; Receptors, Adrenergic, alpha-1; RNA, Small Interfering; Staurosporine; Tetradecanoylphorbol Acetate; Wortmannin | 2009 |
G-protein-coupled receptor agonists activate endogenous phospholipase Cepsilon and phospholipase Cbeta3 in a temporally distinct manner.
Phospholipase Cepsilon (PLCepsilon) is one of the newest members of the phosphatidylinositol-specific phospholipase C (PLC) family. Previous studies have suggested that G-protein-coupled receptors (GPCRs) stimulate phosphoinositide (PI) hydrolysis by activating PLCbeta isoforms through G(q) family G proteins and Gbetagamma subunits. Using RNA interference to knock down PLC isoforms, we demonstrate that the GPCR agonists endothelin (ET-1), lysophosphatidic acid (LPA), and thrombin, acting through endogenous receptors, couple to both endogenous PLCepsilon and the PLCbeta isoform, PLCbeta3, in Rat-1 fibroblasts. Examination of the temporal activation of these PLC isoforms, however, reveals agonist- and isoform-specific profiles. PLCbeta3 is activated acutely within the first minute of ET-1, LPA, or thrombin stimulation but does not contribute to sustained PI hydrolysis induced by LPA or thrombin and accounts for only part of ET-1 sustained stimulation. PLCepsilon, on the other hand, predominantly accounts for sustained PI hydrolysis. Consistent with this observation, reconstitution of PLCepsilon in knockdown cells dose-dependently increases sustained, but not acute, agonist-stimulated PI hydrolysis. Furthermore, combined knockdown of both PLCepsilon and PLCbeta3 additively inhibits PI hydrolysis, suggesting independent regulation of each isoform. Importantly, ubiquitination of inositol 1,4,5-trisphosphate receptors correlates with sustained, but not acute, activation of PLCepsilon or PLCbeta3. In conclusion, GPCR agonists ET-1, LPA, and thrombin activate endogenous PLCepsilon and PLCbeta3 in Rat-1 fibroblasts. Activation of these PLC isoforms displays agonist-specific temporal profiles; however, PLCbeta3 is predominantly involved in acute and PLCepsilon in sustained PI hydrolysis. Topics: Animals; Cells, Cultured; Endothelin-1; Fibroblasts; Isoenzymes; Lysophospholipids; Phosphatidylinositol Phosphates; Phosphoinositide Phospholipase C; Phospholipase C beta; Protein Isoforms; Rats; Receptors, G-Protein-Coupled; Thrombin; Time Factors; Type C Phospholipases | 2006 |
p68RacGAP is a novel GTPase-activating protein that interacts with vascular endothelial zinc finger-1 and modulates endothelial cell capillary formation.
The endothelium is required for maintenance of vascular integrity and homeostasis during vascular development and in adulthood. However, little is known about the coordinated interplay between transcription factors and signaling molecules that regulate endothelial cell-dependent transcriptional events. Vascular endothelial zinc finger-1 (Vezf1) is a zinc finger-containing transcription factor that is specifically expressed within the endothelium during vascular development. We have previously shown that Vezf1 potently activates transcription of the endothelin-1 promoter. We now report the identification of p68RacGAP, a novel Vezf1-interacting 68-kDa RhoGAP domain-containing protein. p68RacGAP mRNA is highly expressed in vascular endothelial cells by Northern blot analysis, and immunohistochemical staining of adult mouse tissues identified p68RacGAP in endothelial cells, vascular smooth muscle cells, and epithelial cells in vivo. Rac1 and Vezf1 both bind avidly to p68RacGAP, suggesting that p68RacGAP is not only a GTPase-activating protein for Rac1 but that p68RacGAP may also be part of the protein complex that binds to and modulates Vezf1 transcriptional activity. Functionally p68RacGAP specifically activates the GTPase activity of Rac1 in vivo but not Cdc42 or RhoA. In addition, p68RacGAP potently inhibits Vezf1/DB1-mediated transcriptional activation of the human endothelin-1 promoter and modulates endothelial cell capillary tube formation. Taken together, these data suggest that p68RacGAP is a multifunctional regulatory protein that has a Rac1-specific GTPase-activating activity, regulates transcriptional activity of the endothelin-1 promoter, and is involved in the signal transduction pathway that regulates endothelial cell capillary tube formation during angiogenesis. Topics: Amino Acid Sequence; Animals; Base Sequence; Blotting, Northern; Bradykinin; Capillaries; Cell Line; COS Cells; DNA-Binding Proteins; Endothelial Cells; Endothelin-1; Endothelium, Vascular; Green Fluorescent Proteins; GTPase-Activating Proteins; Immunohistochemistry; Kruppel-Like Transcription Factors; Luciferases; Luminescent Proteins; Lysophospholipids; Mice; Models, Genetic; Molecular Sequence Data; Mutagenesis, Site-Directed; Neovascularization, Pathologic; NIH 3T3 Cells; Phylogeny; Plasmids; Platelet-Derived Growth Factor; Precipitin Tests; Promoter Regions, Genetic; Protein Binding; Protein Structure, Tertiary; RNA; RNA, Messenger; Signal Transduction; Tissue Distribution; Transcription Factors; Transcription, Genetic; Transfection; Two-Hybrid System Techniques | 2004 |