endothelin-1 and gadolinium-chloride

endothelin-1 has been researched along with gadolinium-chloride* in 7 studies

Other Studies

7 other study(ies) available for endothelin-1 and gadolinium-chloride

ArticleYear
Role of endothelin-1/endothelin receptor signaling in fibrosis and calcification in nephrogenic systemic fibrosis.
    Experimental dermatology, 2014, Volume: 23, Issue:9

    Nephrogenic systemic fibrosis (NSF) is characterized by systemic fibrosis and abnormal calcification in patients with severe renal dysfunction. It is considered that gadolinium (Gd)-containing contrast agents used for magnetic resonance imaging trigger the development of NSF. However, the causative role of Gd and the mechanism of Gd-induced fibrosis and calcification in NSF are unknown. Recently, it has been known that endothelin-1 (ET-1)/ET receptor (ETR) signalling regulates fibrosis and calcification. The objective was to elucidate the role of ET-1/ETR signalling in Gd-induced fibrosis and calcification in NSF. First, we demonstrated that Gd enhanced proliferation and calcification of human adipose tissue-derived mesenchymal stem cells (hMSC) in vitro. Next, we examined the expression of ET-1 and ETR-A in hMSC using proliferation or calcification assay. ET-1 and ETR-A expression in hMSC treated with Gd were elevated. ET-1/ETR signalling inhibitor, bosentan, inhibited Gd-induced proliferation and calcification of hMSC. In addition, bosentan inhibited Gd-induced phosphorylation of ERK and Akt in hMSC. Plasma ET-1 levels of the patients were significantly higher than these of normal individuals and systemic sclerosis patients. In immunofluorescence staining, the expression of ETR-A in fibroblasts in dermal fibrosis lesion of NSF was increased. We conclude that Gd induces proliferation and calcification of hMSC via enhancement of ET-1/ETR signalling. Our results contribute to understand the pathogenesis of NSF.

    Topics: Adolescent; Bosentan; Calcinosis; Cell Proliferation; Cells, Cultured; Contrast Media; Endothelin Receptor Antagonists; Endothelin-1; Gadolinium; Humans; Magnetic Resonance Imaging; Male; Mesenchymal Stem Cells; Middle Aged; Nephrogenic Fibrosing Dermopathy; Receptor, Endothelin A; Signal Transduction; Sulfonamides

2014
Role of Kupffer cells in vascular stress genes during trauma and sepsis.
    The Journal of surgical research, 2010, Volume: 158, Issue:1

    Sepsis remains a serious complication after trauma. Although hepatic microvascular dysfunction occurs during trauma and sepsis, the mechanism responsible is unclear. Since Kupffer cells can provide the signals that regulate the hepatic response in inflammation and contribute to multiple organ failure, this study investigated the role of Kupffer cells in the imbalance of the expression of vasoactive and inflammatory mediators during trauma and sepsis.. The Kupffer cells were inactivated by gadolinium chloride (GdCl(3), 7.5 mg/kg body weight, i.v.) 1 and 2 d before surgery. The animals then underwent femur fracture (FFx) followed 48 h later by cecal ligation and puncture (CLP). After 24 h, blood was obtained to determine the alanine aminotransferase (ALT) activity. Liver samples were also taken for RT-PCR analysis of the mRNA for genes of interest.. Serum ALT levels increased in FFx and CLP. This increase was potentiated by FFx + CLP and was attenuated by GdCl(3). The mRNA expression levels in the FFx showed no change in the ET(A), ET(B), iNOS, and HO-1, and showed a slight increase of 2.6-fold, 2.2-fold, and 2.8-fold for ET-1, eNOS, and TNF-alpha, respectively. The ET-1 mRNA expression level increased after CLP and FFx + CLP. The ET(A) mRNA level showed no change, whereas the ET(B) transcripts increased after CLP. This increase was potentiated after FFx + CLP, and was attenuated by GdCl(3). After CLP alone, iNOS, eNOS, and TNF-alpha mRNA expression levels were increased 20.3-fold, 5.8-fold, and 11.9-fold, respectively. This increase was potentiated after FFx + CLP, and was attenuated by GdCl(3). HO-1 mRNA expression significantly increased after FFx + CLP, and this increase was attenuated by GdCl(3).. Mild trauma alone causes little change in the expression of vasoactive mediators while sequential injury potentiates the imbalanced gene expression induced by sepsis. Kupffer cells might be essential for hepatic microvascular dysfunction after sequential stress.

    Topics: Alanine Transaminase; Animals; Endothelin-1; Femoral Fractures; Gadolinium; Heme Oxygenase (Decyclizing); Kupffer Cells; Liver Circulation; Male; Nitric Oxide Synthase Type II; Rats; Rats, Sprague-Dawley; Receptor, Endothelin A; Receptor, Endothelin B; RNA, Messenger; Sepsis; Tumor Necrosis Factor-alpha

2010
Thromboxane A2 from Kupffer cells contributes to the hyperresponsiveness of hepatic portal circulation to endothelin-1 in endotoxemic rats.
    American journal of physiology. Gastrointestinal and liver physiology, 2005, Volume: 288, Issue:2

    We examined the role of thromboxane A2 (TXA2) in LPS-induced hyperresponsiveness of hepatic portal circulation to endothelins (ETs) and whether Kupffer cells are the primary source of TXA2 release in response to ET-1 in endotoxemia. After 6 h of LPS (1 mg/kg body wt ip) or saline (control), liver was isolated and perfused with recirculating Krebs-Henseleit bicarbonate buffer at a constant flow rate (100 ml.min(-1).kg body wt(-1)). ET-1 (10 pmol/min) was infused for 10 min. Portal pressure (PP) was continuously monitored during perfusion. Perfusate was sampled for enzyme immunoassay of thromboxane B2 (TXB2; the stable metabolite of TXA2) and lactate dehydrogenase (LDH) assay. ET-1 infusion resulted in a significantly greater increase of PP in the LPS group than in controls. Both TXA2 synthase inhibitor furegrelate (Fureg) and TXA2 receptor antagonist SQ-29548 (SQ) substantially blocked enhanced increase of PP in the LPS group (4.9 +/- 0.4 vs. 3.6 +/- 0.5 vs. 2.6 +/- 0.6 mmHg for LPS alone, LPS + Fureg, and LPS + SQ, respectively; P < 0.05) while having no significant effect on controls. GdCl3 for inhibition of Kupffer cells had similar effects (4.9 +/- 0.4 mmHg vs. 2.9 +/- 0.4 mmHg for LPS alone and GdCl3 + LPS, respectively; P < 0.05). In addition, the attenuated PP after ET-1 was found concomitantly with significantly decreased releases of TXB2 and LDH in LPS rats treated with Fureg, SQ, and GdCl3 (886.6 +/- 73.4 vs. 110.8 +/- 0.8 vs. 114.8 +/- 54.7 vs. 135.2 +/- 45.2 pg/ml, respectively; P < 0.05). After 6 h of LPS, Kupffer cells in isolated cell preparations released a significant amount of TXA2 in response to ET-1. These results clearly indicate that hyperresponsiveness of hepatic portal circulation to ET-1 in endotoxemia is mediated at least in part by TXA2-induced receptor activation, and Kupffer cells are likely the primary source of increased TXA2 release.

    Topics: Animals; Benzofurans; Bridged Bicyclo Compounds, Heterocyclic; Endothelin-1; Endotoxemia; Fatty Acids, Unsaturated; Gadolinium; Hydrazines; Kupffer Cells; Lipopolysaccharides; Liver; Male; Portal Pressure; Portal System; Rats; Rats, Sprague-Dawley; Receptors, Thromboxane; Thromboxane A2; Thromboxane-A Synthase

2005
Role of Kupffer cells in the vasoregulatory gene expression during hepatic ischemia/reperfusion.
    Archives of pharmacal research, 2004, Volume: 27, Issue:1

    Hepatic microcirculatory failure is a major component of reperfusion injury in the liver. Recent data provided some evidence that endothelium-derived vasoconstrictors and vasodilators may be functionally important to the control of the total hepatic blood flow under these conditions of circulatory failure. Since Kupffer cells provide signals that regulate the hepatic response in ischemia/reperfusion (I/R), the aim of this study was to investigate the role of Kupffer cells in the I/R-induced imbalance of vasoregulatory gene expression. Rats were subjected to 60 min hepatic ischemia, followed by 5 h of reperfusion. The Kupffer cells were inactivated by gadolinium chloride (GdCl3, 7.5 mg/kg body weight, intravenously) 1 day prior to ischemia. Liver samples were obtained 5 hrs after reperfusion for RT-PCR analysis of the mRNA for genes of interest: endothelin-1 (ET-1), its receptors ETA and ETB, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS) and heme oxygenase-1 (HO-1). ET-1 mRNA expression was increased by I/R. mRNA levels for ETA receptors showed no change, whereas ETB receptor transcripts increased in the I/R group. The increases in ET-1 and ETB mRNA were not prevented by the GdCl3 pretreatment. The mRNA levels for iNOS and eNOS significantly increased within the I/R group with no significant difference between the I/R group and the GdCl3-treated I/R group. HO-1 mRNA expression significantly increased in the I/R group and this increase was attenuated by GdCl3. In conclusion, we have demonstrated that an imbalance in hepatic vasoregulatory gene expression occurs during I/R. Our findings suggest that the activation of Kupffer cells is not required for I/R-induced hepatic microvascular dysfunction.

    Topics: Alanine Transaminase; Animals; Endothelin-1; Endothelium, Vascular; Gadolinium; Gene Expression; Heme Oxygenase (Decyclizing); Heme Oxygenase-1; Injections, Intravenous; Ischemia; Kupffer Cells; Liver; Male; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Rats; Rats, Sprague-Dawley; Receptor, Endothelin A; Receptor, Endothelin B; Reperfusion Injury; Reverse Transcriptase Polymerase Chain Reaction; Time Factors

2004
Glycine but not gadolinium chloride or methyl palmitate reduces postischemic white blood cell accumulation and early graft nonfunction after liver transplantation in the rat.
    Transplantation proceedings, 2002, Volume: 34, Issue:6

    Topics: Animals; Biomarkers; Endothelin-1; Gadolinium; Glycine; Graft Survival; Kupffer Cells; Leukocytes; Liver; Liver Circulation; Liver Transplantation; Palmitates; Rats; Rats, Inbred Lew; Reperfusion Injury; Transplantation, Isogeneic

2002
Gadolinium chloride inhibits pulmonary macrophage influx and prevents O(2)-induced pulmonary hypertension in the neonatal rat.
    Pediatric research, 2001, Volume: 50, Issue:2

    Newborn rats exposed to 60% O(2) for 14 d demonstrated a bronchopulmonary dysplasia-like lung morphology and pulmonary hypertension. A 21-aminosteroid antioxidant, U74389G, attenuated both pulmonary hypertension and macrophage accumulation in the O(2)-exposed lungs. To determine whether macrophage accumulation played an essential role in the development of pulmonary hypertension in this model, pups were treated with gadolinium chloride (GdCl(3)) to reduce lung macrophage content. Treatment of 60% O(2)-exposed animals with GdCl(3) prevented right ventricular hypertrophy (p < 0.05) and smooth muscle hyperplasia around pulmonary vessels, but had no effect on morphologic changes in the lung parenchyma. In addition, GdCl(3) inhibited 60% O(2)-mediated increases in endothelin-1, 8-isoprostane, and nitrotyrosine residues. Organotypic cultures of fetal rat distal lung cells were subjected to cyclical mechanical strain to assess the potential role of GdCl(3)-induced blockade of stretch-mediated cation channels in these effects. Mechanical strain caused a moderate increase of endothelin-1 (p < 0.05), which was unaffected by GdCl(3), but had no effect on 8-isoprostane or nitric oxide synthesis. A critical role for endothelin-1 in O(2)-mediated pulmonary hypertension was confirmed using the combined endothelin receptor antagonist SB217242. We concluded that pulmonary macrophage accumulation, in response to 60% O(2), mediated pulmonary hypertension through up-regulation of endothelin-1.

    Topics: Animals; Animals, Newborn; Bronchopulmonary Dysplasia; Cell Movement; Cells, Cultured; Dinoprost; Endothelin-1; F2-Isoprostanes; Gadolinium; Humans; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Infant, Newborn; Macrophages, Alveolar; Oxygen; Rats; Rats, Sprague-Dawley; Tyrosine

2001
Endothelin-1 gene suppression by shear stress: pharmacological evaluation of the role of tyrosine kinase, intracellular calcium, cytoskeleton, and mechanosensitive channels.
    Journal of molecular and cellular cardiology, 1999, Volume: 31, Issue:2

    Physiological fluid shear stress regulates endothelin-1 (ET-1) gene expression in endothelial cells by inducing an early transient upregulation followed by a sustained suppression, at times greater than 2 h in duration. We evaluated the mechanism of ET-1 mRNA downregulation in confluent monolayers of bovine aortic endothelial (BAE) cells by applying a 6 h steady laminar shear stress of magnitude 20 dyn/cm2. Inhibition of tyrosine kinases using herbimycin A (875 nM) abolished the shear-induced decrease in ET-1 mRNA expression. Similarly, chelation of intracellular calcium ([Ca2+]i) with quin 2-AM (10 microM) blocked the suppression of ET-1 mRNA by shear. To examine the role of the endothelial cytoskeleton in the response to flow, cytochalasin D was used to disrupt F-actin microfilaments. This treatment induced cell retraction and detachment under flow, whereas stabilization of F-actin with phalloidin (1 microM) did not affect shear-induced ET-1 downregulation. In contrast, disruption of the microtubule network with nocodazole (10 micrograms/ml) completely prevented, while microtubule stabilization with taxol (10 microM) did not affect the suppression of ET-1 mRNA by flow. To determine the possible contributions of mechanosensitive channels, barium (1 mM BaCl2), was added to confluent BAE monolayers in a low-sulfate/low-phosphate modified medium and was noted to abrogate the downregulation of ET-1 gene expression and to attenuate the shear-induced increase in cytoplasmic free calcium concentration. Tetraethylammonium (3 mM TEA) partially inhibited the suppression of ET-1 mRNA by shear; in contrast, gadolinium (10 microM GdCl3), an inhibitor of the stretch-activated cation channel ISA, had no effect. Membrane depolarization by elevated extracellular potassium ([K+]o) also attenuated the suppression of ET-1 mRNA by flow at [K+]o = 70 mM and completely inhibited it at [K+]o = 135 mM. In summary, the steady-state downregulation of ET-1 mRNA by physiological levels of fluid shear stress shares signaling features with the morphological and cytoskeletal response to shear stress. These include requirement for intracellular calcium, tyrosine kinase activity, an intact microtubule network, and independence from a Gd(3+)-sensitive ISA. Unlike shear-induced changes in cell morphology and the actin cytoskeleton, the shear-induced decrease in ET-1 mRNA level is blocked by cell depolarization and by Ba2+, a blocker of the shear-activated IKS which also decreases shear-ind

    Topics: Actins; Animals; Barium Compounds; Calcium; Cattle; Chlorides; Cytoskeleton; Down-Regulation; Endothelin-1; Gadolinium; Gene Expression Regulation; Intracellular Fluid; Microtubules; Nitric Oxide Synthase; Protein-Tyrosine Kinases; RNA, Messenger; Tetraethylammonium

1999