endothelin-1 has been researched along with enrasentan* in 9 studies
1 review(s) available for endothelin-1 and enrasentan
Article | Year |
---|---|
New developments in heart failure: role of endothelin and the use of endothelin receptor antagonists.
Despite conventional therapy, there is still much room for improvement in the prognosis of patients with chronic systolic heart failure. Evidence supports a role for endothelin-1 (ET-1), a potent vasoconstrictor, in the pathophysiology of heart failure. Given its potentially deleterious effects, the optimal treatment of heart failure may need to include efforts directed toward antagonizing this hormone. In support of this notion, the use of ET receptor antagonists produces a number of beneficial effects in heart failure, including both improvements in hemodynamics and reductions in the levels of other vasoconstricting neurohormones. There are at least 2 receptors for ET-1 (the ET-A and ET-B receptor), and the effects of ET-1 binding differ depending on the receptor involved. It is still unclear whether blockade of the ET-A receptor alone or the combined blockade of both the ET-A and ET-B receptors will be most efficacious as a therapeutic strategy. Long-term benefits have been achieved with the use of a mixed ET-A/B receptor antagonist, when added to standard triple-drug therapy, in patients with severe heart failure. We await the results of ongoing trials to determine if these agents will fulfill the promise of adding substantial incremental benefit to the treatment of the disease. Topics: Bosentan; Carboxylic Acids; Chronic Disease; Endothelin Receptor Antagonists; Endothelin-1; Heart Failure; Humans; Indans; Peptides, Cyclic; Prognosis; Pyridines; Pyrimidines; Receptors, Endothelin; Sulfonamides; Treatment Outcome | 2000 |
8 other study(ies) available for endothelin-1 and enrasentan
Article | Year |
---|---|
Therapeutic hypercapnia prevents chronic hypoxia-induced pulmonary hypertension in the newborn rat.
Induction of hypercapnia by breathing high concentrations of carbon dioxide (CO(2)) may have beneficial effects on the pulmonary circulation. We tested the hypothesis that exposure to CO(2) would protect against chronic pulmonary hypertension in newborn rats. Atmospheric CO(2) was maintained at <0.5% (normocapnia), 5.5%, or 10% during exposure from birth for 14 days to normoxia (21% O(2)) or moderate hypoxia (13% O(2)). Pulmonary vascular and hemodynamic abnormalities in animals exposed to chronic hypoxia included increased pulmonary arterial resistance, right ventricular hypertrophy and dysfunction, medial thickening of pulmonary resistance arteries, and distal arterial muscularization. Exposure to 10% CO(2) (but not to 5.5% CO(2)) significantly attenuated pulmonary vascular remodeling and increased pulmonary arterial resistance in hypoxia-exposed animals (P < 0.05), whereas both concentrations of CO(2) normalized right ventricular performance. Exposure to 10% CO(2) attenuated increased oxidant stress induced by hypoxia, as quantified by 8-isoprostane content in the lung, and prevented upregulation of endothelin-1, a critical mediator of pulmonary vascular remodeling. We conclude that hypercapnic acidosis has beneficial effects on pulmonary hypertension and vascular remodeling induced by chronic hypoxia, which we speculate derives from antioxidant properties of CO(2) on the lung and consequent modulating effects on the endothelin pathway. Topics: Animals; Animals, Newborn; Body Weight; Carbon Dioxide; Carboxylic Acids; Chronic Disease; Endothelin Receptor Antagonists; Endothelin-1; Female; Hematocrit; Hypercapnia; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Indans; Oxidative Stress; Oxygen; Pregnancy; Pulmonary Artery; Pulmonary Circulation; Rats; Up-Regulation | 2006 |
A role for platelet-derived growth factor beta-receptor in a newborn rat model of endothelin-mediated pulmonary vascular remodeling.
Newborn rats exposed to 60% O2 for 14 days develop endothelin (ET)-1-dependent pulmonary hypertension with vascular remodeling, characterized by increased smooth muscle cell (SMC) proliferation and medial thickening of pulmonary resistance arteries. Using immunohistochemistry and Western blot analyses, we examined the effect of exposure to 60% O2 on expression in the lung of receptors for the platelet-derived growth factors (PDGF), which are implicated in the pathogenesis of arterial smooth muscle hyperplasia. We observed a marked O2-induced upregulation of PDGF-alpha and -beta receptors (PDGF-alphaR and -betaR) on arterial smooth muscle. This led us to examine pulmonary vascular PDGF receptor expression in 60% O2-exposed rats given SB-217242, a combined ET receptor antagonist, which we found prevented the O2-induced upregulation of PDGF-betaR, but not PDGF-alphaR, on arterial smooth muscle. PDGF-BB, a major PDGF-betaR ligand, was found to be a potent in vitro inducer of hyperplasia and DNA synthesis in cultured pulmonary artery SMC from infant rats. A critical role for PDGF-betaR ligands in arterial SMC proliferation was confirmed in vivo using a truncated soluble PDGF-betaR intervention, which attenuated SMC proliferation induced by exposure to 60% O2. Collectively, these data are consistent with a major role for PDGF-betaR-mediated SMC proliferation, acting downstream of increased ET-1 in a newborn rat model of 60% O2-induced pulmonary hypertension. Topics: Animals; Animals, Newborn; Becaplermin; Carboxylic Acids; Cell Proliferation; Endothelin Receptor Antagonists; Endothelin-1; Female; Hyperplasia; Hypertension, Pulmonary; Indans; Ligands; Models, Animal; Muscle, Smooth, Vascular; Oxygen; Platelet-Derived Growth Factor; Pregnancy; Proto-Oncogene Proteins c-sis; Pulmonary Artery; Rats; Rats, Sprague-Dawley; Receptor, Platelet-Derived Growth Factor alpha; Receptor, Platelet-Derived Growth Factor beta; Receptors, Endothelin; Up-Regulation | 2005 |
An endothelin receptor antagonist, SB-217242, inhibits airway hyperresponsiveness in allergic mice.
Within the airways, endothelin-1 (ET-1) can exert a range of prominent effects, including airway smooth muscle contraction, bronchial obstruction, airway wall edema, and airway remodeling. ET-1 also possesses proinflammatory properties and contributes to the late-phase response in allergic airways. However, there is no direct evidence for the contribution of endogenous ET-1 to airway hyperresponsiveness in allergic airways. Allergic inflammation induced in mice by sensitization and challenge with the house dust mite allergen Der P1 was associated with elevated levels of ET-1 within the lung, increased numbers of eosinophils within bronchoalveolar lavage fluid and tissue sections, and development of airway hyperresponsiveness to methacholine (P < 0.05, n = 6 mice per group). Treatment of allergic mice with an endothelin receptor antagonist, SB-217242 (30 mg x kg(-1) x day(-1)), during allergen challenge markedly inhibited airway eosinophilia (bronchoalveolar lavage fluid and tissue) and development of airway hyperresponsiveness. These findings provide direct evidence for a mediator role for ET-1 in development of airway hyperresponsiveness and airway eosinophilia in Der P1-sensitized mice after antigen challenge. Topics: Animals; Bronchial Hyperreactivity; Bronchoalveolar Lavage Fluid; Carboxylic Acids; Cell Count; Endothelin Receptor Antagonists; Endothelin-1; Hypersensitivity; Indans; Leukocyte Count; Leukocytes; Macrophages, Alveolar; Male; Mice; Mice, Inbred CBA | 2002 |
Unmasking of endothelin-1-induced natriuresis and renal vasodilation in the dog by enrasentan (SB 217242).
Infusion of endothelin-1 (ET-1) into conscious, chronically instrumented dogs (1, 3 and 10 ng/kg/min i.v.) resulted in decreases in renal plasma flow, urine flow and sodium excretion. Intravenous ET-1 infusion in the presence of enrasentan at 30 microg/kg/min, resulted in an increase in renal plasma flow and sodium excretion; however, at a higher infusion rate (100 microg/kg/min) no renal vasodilation or natriuresis was observed. These data indicate that enrasentan can unmask ET(B)-receptor-induced renal vasodilation and natriuresis. Topics: Animals; Blood Pressure; Carboxylic Acids; Dogs; Endothelin Receptor Antagonists; Endothelin-1; Female; Indans; Kidney; Natriuresis; Receptor, Endothelin A; Receptor, Endothelin B; Vasodilation | 2000 |
Effect of SB 217242 on hypoxia-induced cardiopulmonary changes in the high altitude-sensitive rat.
The effects of SB 217242, a non-peptide endothelin (ET) receptor antagonist, were investigated against hypoxia-induced cardiopulmonary changes in high altitude-sensitive rats. In isolated pulmonary artery rings, SB 217242 (30 n m) antagonized ET-1-induced contractions with a p KB of 8.0. There was no difference in the sensitivity to ET-1 or the potency of SB 217242 in pulmonary artery from normoxic rats vs. rats exposed to hypoxia (9% O2) for 14 days. However, there was a marked reduction in the maximum response to ET-1, but not to KCl or phenylephrine, in pulmonary artery from hypoxic rats; this phenomenon was inhibited by treatment of animals with SB 217242 (10.8 mg/day, ip by osmotic pump) for the 14-day hypoxic period. Furthermore, there was a significant reduction in carbachol-induced, endothelium-dependent relaxation of precontracted pulmonary artery from hypoxic animals; SB 217242 treatment during the hypoxic period did not influence this difference. Vehicle-treated rats exposed to 14-day hypoxia had 173% higher pulmonary artery pressures and 75% higher right/left+septum ventricular mass ratios compared to normoxic animals. SB 217242 (3.6 or 10.8 mg/day, ip) markedly reduced (80 and 95%, respectively) hypoxia-induced increases in pulmonary artery pressure. Right ventricular hypertrophy was inhibited by 40% at the 10.8 mg/day dose. Marked medial thickening and luminal stenosis of small and medium-sized pulmonary arteries was observed in hypoxic rats. The SB 217242-treated, hypoxia-exposed rats had comparable small and medium-sized arteries to normoxic rats. Rats treated with SB 217242 (10.8 mg/day) for the last 14 days of a 28-day hypoxic exposure had significantly lower pulmonary artery pressures than those of vehicle-treated rats. In addition, the effects of the selective ETA receptor antagonist, SB 247083, and the selective ETB receptor antagonist, A-192621 (3.6 or 10.8 mg/day, ip), were compared against hypoxia-induced increases in pulmonary artery pressure and plasma ET concentrations. SB 247083, but not A-192621, inhibited hypoxia-induced pulmonary hypertension, whereas A-192621, but not SB 247083, significantly exacerbated hypoxia-induced increases in ET concentrations, suggesting that hypoxia-induced pulmonary pressor responses are mediated via ETA receptor activation, while ETB receptor blockade may alter clearance of hypoxia-induced elevated plasma ET. The inhibitory effects of SB 217242 on the functional and remodeling changes induced by Topics: Altitude; Animals; Benzofurans; Carboxylic Acids; Endothelin Receptor Antagonists; Endothelin-1; Hypertension, Pulmonary; Hypertrophy, Right Ventricular; Hypoxia; Indans; Male; Propionates; Pulmonary Artery; Pyrrolidines; Random Allocation; Rats; Receptors, Endothelin | 1999 |
Plasma- and cerebrospinal fluid-immunoreactive endothelin-1: effects of nonpeptide endothelin receptor antagonists with diverse affinity profiles for endothelin-A and endothelin-B receptors.
Some endothelin (ET) receptor antagonists have been reported to elevate plasma immunoreactive endothelin-1 (irET-1). However, there is no information regarding the effects of ET receptor antagonists on cerebrospinal fluid (CSF) levels. To better understand the regulation of circulating and CSF ET-1, the effects of several nonpeptide antagonists with high, intermediate, or low affinity at the ETB receptor, as well as the potent ETB selective agonist sarafotoxin 6c (S6c), were characterized and compared. The effects of SB209670 (Ki ETA = 0.2 nM; Ki ETB = 12 nM), SB217242 (Ki ETA = 1.1 nM; Ki ETB = 111 nM), SB234551 (Ki ETA = 0.1 nM; Ki ETB = 500 nM), SB247083 (Ki ETA = 0.4 nM; Ki ETB = 467 nM), and S6c (Ki ETA = 950 nM; Ki ETB = 1 nM) on plasma irET-1 were determined by ELISA in the anesthetized dog after i.v. administration. Systemic administration of equivalent doses of the nonpeptide ET receptor antagonists produced dose-related elevations in plasma irET-1 which were correlated (p = 0.019) with affinity at the ETB receptor. There was no significant correlation with affinity at the ETA receptor. In addition, the plasma irET-1 and ET antagonist concentrations were linearly correlated (r = 0.98) throughout the time course after antagonist administration. There was no evidence of densensitization after three bolus administrations performed at 2-h intervals (SB209670, 1 and 3 mg/kg i.v.). Elevations in plasma irET-1 (four- to fivefold) were also observed after systemic administration of S6c (1 nmol/kg i.v.). The administration of L-NAME (200 micrograms/kg/min for 30 min), an inhibitor of nitric oxide (NO) synthase, increased blood pressure (33%) but did not alter plasma irET-1. In contrast, systemic administration of the ET receptor antagonists had little or no effect on the on irET-1 in the CSF. However, intracerebroventricular (i.c.v.) administration of SB209670 produced a dose-related (3-100 micrograms) increase in cisternal CSF levels of irET-1 without altering plasma irET-1. Systemic administration of ETB receptor antagonists and agonists rapidly increased plasma irET-1. These ETB receptor antagonist effects correlate linearly with affinity at the cloned human ETB receptor, do not exhibit desensitization, and do not appear to reflect inhibition of ETB-mediated NO production. The endothelial ETB receptor may represent a high-capacity storage/clearance site for circulating ET-1. ET receptor antagonists may also act extravascularly/abluminally to increase i Topics: Animals; Benzofurans; Carboxylic Acids; Dogs; Endothelin Receptor Antagonists; Endothelin-1; Enzyme Inhibitors; Indans; Injections, Intravenous; Injections, Intraventricular; Male; NG-Nitroarginine Methyl Ester; Nitric Oxide Synthase; Propionates; Receptor, Endothelin A; Receptor, Endothelin B; Receptors, Endothelin; Vasoconstrictor Agents; Viper Venoms | 1998 |
Chronic endothelin-1 blockade preserves myocardial contractility in dilated cardiomyopathy.
Endothelin-1 (ET-1) is known to have positive inotropic effects in isolated cardiac muscle strips. ET-1 levels are elevated in congestive heart failure (CHF). We investigated the effects of ET-1 on contractility and cardiac relaxation (lusitropy) of the intact healthy murine heart and myocarditic/cardiomyopathic heart by chronic oral treatment with a mixed ETA/ETB blocker SB217242. Chronic ET-1 blockade of normal hearts resulted in depression of contractility and lusitropy of the normal heart but preservation and enhancement of contractility and lusitropy in myocarditic animals, in which ET-1 cardiac content is elevated. This suggests that ET-1 is important in the basal contractility and relaxation of the normal heart but that its chronic elevation in CHF causes impairment of cardiac systolic and diastolic performance. Topics: Animals; Carboxylic Acids; Cardiomyopathy, Dilated; Endothelin Receptor Antagonists; Endothelin-1; Hemodynamics; Indans; Male; Mice; Mice, Inbred DBA; Myocardial Contraction; Myocarditis; Myocardium; Receptor, Endothelin A | 1998 |
Nonpeptide endothelin receptor antagonists. X. Inhibition of endothelin-1- and hypoxia-induced pulmonary pressor responses in the guinea pig by the endothelin receptor antagonist, SB 217242.
This study investigated the effects of the nonpeptide endothelin (ET) receptor antagonist, SB 217242, against ET-1-induced pulmonary pressor responses and in a model of hypoxia-induced pulmonary hypertension in the guinea pig. In guinea pig isolated pulmonary artery rings, SB 217242 (3-300 nM) produced a concentration-dependent inhibition of ET-1-induced contractions, with a pA2 of 8.1. SB 217242 (1 or 3 mg/kg i.v.) elicited a dose-related inhibition of ET-1-induced increases in pulmonary artery and airway insufflation pressure responses in anesthetized guinea pigs. Chronic exposure to hypoxia (9% O2 for 0-14 days) produced a time-dependent increase in mean pulmonary artery pressure. After a 10-day exposure to hypoxia there was about a 100% elevation in pulmonary artery pressure, and right ventricular mass and plasma irET levels increased 3-fold compared with normoxic animals. SB 217242, administered by continuous intraperitoneal infusion via mini osmotic pump (0.36, 3.6 or 10.8 mg/day), significantly reduced (by about 50%) hypoxia-induced pulmonary artery pressure increases at all three doses used. The hypoxia-induced right ventricular hypertrophy was significantly attenuated by the 3.6 and 10.8 mg/day doses. Based on hematocrit, hemoglobin and red blood cell counts, SB 217242 did not affect the normal physiological erythropoietic response to hypoxia. There were no appreciable differences in the maximum contractile effects of ET-1 or the potency of SB 217242 (pKB values, 8.3 and 8.0, respectively) versus ET-1-induced responses in isolated pulmonary arteries from hypoxic versus normoxic guinea pigs. However, there was a marked reduction in endothelium-dependent relaxation of precontracted pulmonary artery isolated from hypoxic compared with normoxic animals. The results of the present study provide further preclinical evidence for a pathophysiological role of ET-1 and the potential therapeutic utility of ET receptor antagonists, such as SB 217242, in pulmonary hypertension. Topics: Animals; Blood Pressure; Carboxylic Acids; Endothelin Receptor Antagonists; Endothelin-1; Guinea Pigs; Hypoxia; In Vitro Techniques; Indans; Male; Pulmonary Artery | 1997 |