endothelin-1 has been researched along with dihydroethidium* in 4 studies
1 trial(s) available for endothelin-1 and dihydroethidium
Article | Year |
---|---|
Vascular dysfunction of venous bypass conduits is mediated by reactive oxygen species in diabetes: role of endothelin-1.
Diabetes is associated with increased risk for complications following coronary bypass grafting (CABG) surgery. Augmented superoxide (*O2*) production plays an important role in diabetic complications by causing vascular dysfunction. The potent vasoconstrictor endothelin-1 (ET-1) is also elevated in diabetes and following CABG; however, the effect of ET-1 on *O2* generation and/or vascular dysfunction in bypass conduits remain unknown. Accordingly, this study investigated basal and ET-1-stimulated *O2* production in bypass conduits and determined the effect of *O2* on conduit reactivity. Saphenous vein specimens were obtained from nondiabetic (n = 24) and diabetic (n = 24) patients undergoing CABG. Dihydroethidium staining and NAD(P)H oxidase activity assays (5380 +/- 940 versus 16,362 +/- 2550 relative light units/microg) demonstrated increased basal *O2* levels in the diabetes group (p < 0.05). Plasma ET-1 levels were associated with elevated basal *O2* levels, and treatment of conduits with exogenous ET-1 further increased *O2* production and augmented vasoconstriction. Furthermore, vascular relaxation was impaired in the diabetic group (75 versus 40%), which was restored by *O2* scavenger superoxide dismutase. These findings suggest that ET-1 causes bypass conduits dysfunction via stimulation of *O2* production in diabetes. Novel therapies that attenuate *O2* generation in bypass conduits may improve acute and late outcome of CABG in diabetic patients. Topics: Blotting, Western; Coronary Artery Bypass; Coronary Vessels; Diabetes Mellitus; Dose-Response Relationship, Drug; Endothelin-1; Ethidium; Female; Fluorescent Dyes; Humans; Male; Microscopy, Confocal; Middle Aged; Muscle Contraction; Muscle Relaxation; Muscle, Smooth, Vascular; NADPH Oxidases; Reactive Oxygen Species | 2005 |
3 other study(ies) available for endothelin-1 and dihydroethidium
Article | Year |
---|---|
Role of reactive oxygen species in the regulation of cardiac contractility.
Increased production of reactive oxygen species (ROS) has been linked to the pathogenesis of contractile dysfunction in heart failure. However, it is unclear whether ROS can regulate physiological cellular processes in the myocardium. Here, we characterized the role of endogenous ROS production in the acute regulation of cardiac contractility in the intact rat heart. In isolated perfused rat hearts, endothelin-1 (ET-1, 1nmol/L) stimulated ROS formation in the left ventricle, which was prevented by the antioxidant N-acetylcysteine and the NAD(P)H oxidase inhibitor apocynin. N-acetylcysteine, the superoxide dismutase mimetic MnTMPyP, and apocynin significantly attenuated ET-1-mediated inotropic effect, which was accompanied by inhibition of extracellular signal regulated kinase 1/2 (ERK1/2) phosphorylation. Moreover, the mitochondrial K(ATP) channel blocker 5-HD, and the mitochondrial large conductance calcium activated potassium channel blocker paxilline, but not the sarcolemmal K(ATP) channel blocker HMR 1098 attenuated the inotropic response to ET-1. However, ET-1-induced ROS generation was not abolished by inhibiting mitochondrial K(ATP) channel opening. In contrast to ET-1 stimulation, the positive inotropic effect of β(1)-adrenergic receptor agonist dobutamine (250nmol/L) was significantly augmented by N-acetylcysteine and apocynin. Moreover, dobutamine-induced phospholamban phosphorylation was markedly enhanced by apocynin. In conclusion, NAD(P)H oxidase-derived ROS play a physiological role in the acute regulation of cardiac contractility in the intact rat heart. Our results reveal that ET-1-induced increase in cardiac contractility is partially dependent on enhanced ROS generation, which in turn, activates the ERK1/2 pathway. On the other hand, β-adrenergic receptor-induced positive inotropic effect and phospholamban phosphorylation is enhanced by NAD(P)H oxidase inhibition. Topics: Animals; Blotting, Western; Calcium-Binding Proteins; Endothelin-1; Ethidium; In Vitro Techniques; Male; Mitogen-Activated Protein Kinase 1; Mitogen-Activated Protein Kinase 3; Myocardial Contraction; Phosphorylation; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species | 2011 |
Endothelin-1 activation of JAK2 in vascular smooth muscle cells involves NAD(P)H oxidase-derived reactive oxygen species.
Endothelin-1 (ET-1) and JAK2 are both implicated in diabetic complications. Therefore, we investigated whether ET-1 differentially activates JAK2 under conditions of normal (5 mM) and high (25 mM) glucose. We tested the hypothesis that reactive oxygen species mediate the activation of JAK2 in response to ET-1. In rat aortic vascular smooth muscle cells (VSMC), ET-1 (10 (- 7) M, 5 min) stimulated the activation of JAK2, which was further enhanced under high glucose conditions. Allopurinol (xanthine oxidase inhibitor, 1 microM) and l-NAME (nitric oxide synthase inhibitor, 1 mM) had no effect on ET-1-induced JAK2 activation, while apocynin (NAD(P)H oxidase inhibitor 100 microM) resulted in a significant inhibition of ET-1-induced JAK2 and MAPK activation. Overexpression of SOD did not inhibit ET-1-induced activation of JAK2, but catalase (50 units/mL) treatment resulted in complete inhibition. In vivo administration of apocynin (1.5 mM) resulted in a significant decrease ( 50%), while the ETA receptor antagonist ABT-627 completely inhibited phosphorylation of JAK2 in aortae from STZ-induced diabetic rats. Additionally, DHE staining of aortic sections was significantly reduced in diabetic rats treated with ABT-627. These data suggest that in VSMC, ET-1 via the ETA receptor, utilizes NAD(P)H oxidase to activate JAK2. Topics: Adenoviridae; Animals; Aorta, Thoracic; Cell Separation; Diabetes Mellitus, Experimental; Endothelin-1; Enzyme Activation; Ethidium; Fluorescent Dyes; Glucose; Immunoblotting; In Vitro Techniques; Janus Kinase 2; Male; Mitogen-Activated Protein Kinases; Muscle, Smooth, Vascular; NADPH Oxidases; Protein-Tyrosine Kinases; Proto-Oncogene Proteins; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Transfection | 2005 |
ET-1 stimulates pulmonary arterial smooth muscle cell proliferation via induction of reactive oxygen species.
Recent studies implicate reactive oxygen species (ROS) such as superoxide anions and H(2)O(2) in the proliferation of systemic vascular smooth muscle cells (SMCs). However, the role of ROS in SMC proliferation within the pulmonary circulation remains unclear. We investigated the effects of endothelin-1 (ET-1), a potential SMC mitogen, on ROS production and proliferation of fetal pulmonary artery SMCs (FPASMCs). Exposure to ET-1 resulted in increases in superoxide production and viable FPASMCs after 72 h. These increases were prevented by pretreatment with PD-156707. Treatment with pertussis toxin blocked the effects of ET-1, whereas cholera toxin stimulated superoxide production and increased viable cell numbers even in the absence of ET-1. Wortmannin, LY-294002, diphenyleneiodonium (DPI), 4-(2-aminoethyl)benzenesulfonyl fluoride, and apocynin also prevented the ET-1-mediated increases in superoxide production and viable cell numbers. Exposure to H(2)O(2) or diethyldithiocarbamate increased viable cell number by 37% and 50%, respectively. Conversely, ascorbic acid and DPI decreased viable cell number, which appeared to be due to an increase in programmed cell death. Our data suggest that ET-1 exerts a mitogenic effect on FPASMCs via an increase in ROS production and that antioxidants can block this effect via induction of apoptosis. Antioxidant treatment may therefore represent a potential therapy for pulmonary vascular diseases. Topics: Animals; Antioxidants; Ascorbic Acid; Cell Division; Cells, Cultured; Chelating Agents; Culture Media, Serum-Free; Dioxoles; Ditiocarb; Endothelin-1; Enzyme Inhibitors; Ethidium; Fluorescent Dyes; Microscopy, Fluorescence; Muscle, Smooth, Vascular; Pulmonary Artery; Reactive Oxygen Species; Sheep; Signal Transduction | 2001 |