endothelin-1 and cryptotanshinone

endothelin-1 has been researched along with cryptotanshinone* in 2 studies

Other Studies

2 other study(ies) available for endothelin-1 and cryptotanshinone

ArticleYear
Proliferative inhibition of danxiongfang and its active ingredients on rat vascular smooth muscle cell and protective effect on the VSMC damage induced by hydrogen peroxide.
    Journal of ethnopharmacology, 2009, Nov-12, Volume: 126, Issue:2

    Danxiongfang (DF) is a new Chinese medicine formula used to treat atherosclerosis and vascular restenosis. The active ingredients in DF are danshensu (DSS), tanshinones (cryptotanshinone, CT) and ferulic acid (FA). The aim of present study was to evaluate the inhibitory effects of DF and its active ingredients on cell proliferation and protection against hydrogen peroxide (H(2)O(2))-induced injury in rat vascular smooth muscle cells (VSMC) in vitro.. VSMC proliferation was assayed by cell counting and measurement of cell viability using the 3-(4, 5-dimethylthiazol -2yl)-2, 5-diphenyltetrazolium bromide (MTT) method and protein content was measured by the Bradford method. The nitric oxide (NO) level was detected by an assay kit. The endothelin-1 (ET-1) level was measured by ELISA. The protective effects of DF and its active ingredients on H(2)O(2)-induced cell injury was evaluated in terms of cell viability (MTT assay), superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels. Hydroxyl free radicals generated by the Fenton reaction was detected with the spin-trapping technique on an electron spin resonance spectrometer.. The results suggest that DSS, CT, FA and DF inhibited VSMC proliferation by increasing the NO level and decreasing the ET-1 content. In rat VSMCs exposed to H(2)O(2), FA, DSS, CT and the six formulations of DF increased cell viability and SOD activity, and reduced the levels of MDA and hydroxyl free radicals. These effects of FA, DSS and CT occurred in a dose-dependent manner. Of the six formulas, DF 4 and DF 5 had the more significant activities. The effects of DF were much greater than those of the individual ingredients, even though the concentrations of these ingredients in the DF formulas were much lower than the doses of the individual ingredients used in each study, indicating markedly synergistic effects of DSS, CT and FA in DF on rat VSMCs.. these findings provide a pharmacological foundation for the clinical use of DF in the prevention and treatment of hyperlipidemia and atherosclerosis relevant to endothelial cell proliferation and damage.

    Topics: Animals; Antioxidants; Aorta; Cardiotonic Agents; Cell Proliferation; Cell Survival; Cells, Cultured; Coumaric Acids; Dose-Response Relationship, Drug; Drug Synergism; Drugs, Chinese Herbal; Endothelin-1; Hydrogen Peroxide; Hydroxyl Radical; Lactates; Male; Malondialdehyde; Muscle, Smooth, Vascular; Myocytes, Smooth Muscle; Nitric Oxide; Phenanthrenes; Rats; Rats, Sprague-Dawley; Superoxide Dismutase

2009
Cryptotanshinone inhibits endothelin-1 expression and stimulates nitric oxide production in human vascular endothelial cells.
    Biochimica et biophysica acta, 2006, Volume: 1760, Issue:1

    The Chinese herb Salvia miltiorrhiza (SM) has been found to have beneficial effects on the circulatory system. In the present study, we investigated the effects of cryptotanshinone (derived from SM) on endothelin-1 (ET-1) expression in human umbilical vein endothelial cells (HUVECs). The effect of cryptotanshinone on nitric oxide (NO) in HUVECs was also examined. We found that cryptotanshinone inhibited basal and tumor necrosis factor-alpha (TNF-alpha) stimulated ET-1 secretion in a concentration-dependent manner. Cryptotanshinone also induced a concentration-dependent decrease in ET-1 mRNA expression. Cryptotanshinone increased basal and TNF-alpha-attenuated NO production in a dose-dependent fashion. Cryptotanshinone induced a concentration-dependent increase in endothelial nitric oxide synthase (eNOS) expression without significantly changing neuronal nitric oxide synthase (nNOS) expression in HUVECs in the presence or absence of TNF-alpha. NOS activities in the HUVECs were also induced by cryptotanshinone. Furthermore, decreased ET-1 expression in response to cryptotanshinone was not antagonized by the NOS inhibitor l-NAME. A gel shift assay further showed that TNF-alpha-induced Nuclear Factor-kappaB (NF-kappaB) activity was significantly reduced by cryptotanshinone. These data suggest that cryptotanshinone inhibits ET-1 production, at least in part, through a mechanism that involves NF-kappaB but not NO production.

    Topics: Cells, Cultured; Drugs, Chinese Herbal; Endothelial Cells; Endothelin-1; Endothelium, Vascular; Gene Expression Regulation; Humans; NF-kappa B; Nitric Oxide; Nitric Oxide Synthase Type I; Nitric Oxide Synthase Type III; Phenanthrenes; RNA, Messenger; Salvia miltiorrhiza; Tumor Necrosis Factor-alpha; Umbilical Veins

2006