endothelin-1 and bardoxolone-methyl

endothelin-1 has been researched along with bardoxolone-methyl* in 3 studies

Reviews

1 review(s) available for endothelin-1 and bardoxolone-methyl

ArticleYear
Treatment of chronic kidney disease.
    Kidney international, 2012, Volume: 81, Issue:4

    Treatment of chronic kidney disease (CKD) can slow its progression to end-stage renal disease (ESRD). However, the therapies remain limited. Blood pressure control using angiotensin-converting enzyme (ACE) inhibitors or angiotensin II receptor blockers (ARBs) has the greatest weight of evidence. Glycemic control in diabetes seems likely to retard progression. Several metabolic disturbances of CKD may prove to be useful therapeutic targets but have been insufficiently tested. These include acidosis, hyperphosphatemia, and vitamin D deficiency. Drugs aimed at other potentially damaging systems and processes, including endothelin, fibrosis, oxidation, and advanced glycation end products, are at various stages of development. In addition to the paucity of proven effective therapies, the incomplete application of existing treatments, the education of patients about their disease, and the transition to ESRD care remain major practical barriers to better outcomes.

    Topics: Angiotensin Receptor Antagonists; Angiotensin-Converting Enzyme Inhibitors; Anti-Inflammatory Agents, Non-Steroidal; Antihypertensive Agents; Diabetes Mellitus, Type 2; Disease Progression; Endothelin-1; Humans; Hypertension; Kidney Failure, Chronic; Oleanolic Acid; Pyridones; Renal Insufficiency, Chronic; Renin-Angiotensin System

2012

Other Studies

2 other study(ies) available for endothelin-1 and bardoxolone-methyl

ArticleYear
Bardoxolone Methyl Displays Detrimental Effects on Endothelial Bioenergetics, Suppresses Endothelial ET-1 Release, and Increases Endothelial Permeability in Human Microvascular Endothelium.
    Oxidative medicine and cellular longevity, 2020, Volume: 2020

    Nrf2 is a master regulator of antioxidant cellular defence, and agents activating the Nrf2 pathway have been tested in various diseases. However, unexpected side effects of cardiovascular nature reported for bardoxolone methyl in patients with type 2 diabetes mellitus and stage 4 chronic kidney disease (the BEACON trial) still have not been fully explained. Here, we aimed to characterize the effects of bardoxolone methyl compared with other Nrf2 activators-dimethyl fumarate and L-sulforaphane-on human microvascular endothelium. Endothelial toxicity, bioenergetics, mitochondrial membrane potential, endothelin-1 (ET-1) release, endothelial permeability, Nrf2 expression, and ROS production were assessed in human microvascular endothelial cells (HMEC-1) incubated for 3 and 24 hours with 100 nM-5 

    Topics: Cell Line; Cell Survival; Dimethyl Fumarate; Down-Regulation; Endothelial Cells; Endothelin-1; Gene Expression; Humans; Isothiocyanates; Membrane Potential, Mitochondrial; Microvessels; Mitochondria; NF-E2-Related Factor 2; Oleanolic Acid; Permeability; Reactive Oxygen Species; Sulfoxides

2020
Effects of captopril, telmisartan and bardoxolone methyl (CDDO-Me) in ischemia-reperfusion-induced acute kidney injury in rats: an experimental comparative study.
    Clinical and experimental pharmacology & physiology, 2016, Volume: 43, Issue:2

    Renal ischemia-reperfusion (IR) injury is one of the most common causes of acute kidney injury. This study investigated the effects of captopril (CAP), telmisartan (TEL) and bardoxolone methyl (BM) in animals with renal IR injury. Adult male Wistar-Albino rats were divided into six groups: control, vehicle, IR, IR with CAP, IR with TEL and IR with BM. Before IR was induced, drugs were administered by oral gavage. After a 60-min ischemia and a 120-min reperfusion period, bilateral nephrectomies were performed. Serum urea, creatinine, neutrophil gelatinase-associated lipocalin (NGAL) levels, tissue total oxidant status (TOS), total antioxidant status (TAS), total thiol (TT), asymmetric dimethylarginine (ADMA) levels, superoxide dismutase (SOD) activity and glutathione peroxidase (GSH-Px) activity were measured. Tissue mRNA expression levels of peroxisome proliferator-activated receptor-ɣ (PPAR-ɣ), nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) were analyzed. In addition, renal tissues were evaluated histopathologically and immunohistochemically. All tested drugs reduced renal damage, apoptosis, urea, creatinine, NGAL, TOS, nitric oxide (NO) and ADMA levels, NF-κB, inducible nitric oxide synthase (iNOS) and endothelin-1 (ET-1) expressions (P < 0.001). All tested drugs increased SOD activity, GSH-Px activity, TAS levels, TT levels, endothelial nitric oxide synthase (eNOS) expression, dimethylarginine dimethylaminohydrolases (DDAHs) expression, Nrf2 expression and PPAR-ɣ expression (P < 0.001, P < 0.003). These results suggest that CAP, TEL and BM pretreatment could reduce renal IR injury via anti-inflammatory, antioxidant and anti-apoptotic effects.

    Topics: Acute Kidney Injury; Acute-Phase Proteins; Animals; Antioxidants; Apoptosis; Arginine; Benzimidazoles; Benzoates; Captopril; Creatine; Endothelin-1; Gene Expression Regulation; Glutathione Peroxidase; Ischemia; Kidney; Lipocalin-2; Lipocalins; Nitric Oxide; Nitric Oxide Synthase Type II; Nitric Oxide Synthase Type III; Oleanolic Acid; Proto-Oncogene Proteins; Rats; Rats, Wistar; Reperfusion Injury; Sulfhydryl Compounds; Superoxide Dismutase; Telmisartan; Urea

2016