endothelin-1 has been researched along with 3-methylquercetin* in 2 studies
2 other study(ies) available for endothelin-1 and 3-methylquercetin
Article | Year |
---|---|
Glucuronidated and sulfated metabolites of the flavonoid quercetin prevent endothelial dysfunction but lack direct vasorelaxant effects in rat aorta.
Epidemiological studies have reported an inverse association between dietary flavonoid intake and mortality for ischemic heart disease. Quercetin reduces blood pressure and restores endothelial dysfunction in hypertensive animals. However, quercetin (aglycone) is usually not present in plasma, but it is rapidly metabolized during absorption by methylation, glucuronidation and sulfation. We have analyzed the vasorelaxant effects and the role on NO bioavailability and endothelial function of quercetin and its conjugated metabolites (quercetin-3-glucuronide, isorhamnetin-3-glucuronide and quercetin-3'-sulfate) in rat aorta. Thoracic aortic rings isolated from Wistar rats were mounted for isometric force recording and endothelial function was tested by measuring the vasorelaxant response to acetylcholine. NADPH-enhanced O(2)(-) release was quantified in homogenates from cultured aortic smooth muscle cells using lucigenin chemiluminescence. Unlike quercetin, the conjugated metabolites had no direct vasorelaxant effect, and did not modify endothelial function or the biological activity of NO. However, all metabolites (at 10 micromol/L) prevented, at least partially, the impairment of endothelial-derived NO response under conditions of high oxidative stress induced by the SOD inhibitor DETCA. Furthermore, they protected the biological activity of exogenous NO when impaired by DETCA. Quercetin and quercetin-3'-sulfate (>or=10 micromol/L) or quercetin-3-glucuronide (100 micromol/L) inhibited NADPH oxidase-derived O(2)(-) release. Quercetin and quercetin-3-glucuronide (1 micromol/L) prevented the endothelial dysfunction induced by incubation with ET-1. These data indicate, for the first time, that the conjugated metabolites could be responsible for the in vivo protective activity of quercetin on endothelial dysfunction. Topics: Acetylcholine; Animals; Antioxidants; Aorta, Thoracic; Biotransformation; Dose-Response Relationship, Drug; Endothelin-1; Endothelium, Vascular; Flavonols; Glucuronides; In Vitro Techniques; NADPH Oxidases; Nitric Oxide; Oxidative Stress; Quercetin; Rats; Rats, Wistar; Sulfates; Superoxides; Vasodilation; Vasodilator Agents | 2009 |
Quercetin inhibits vascular superoxide production induced by endothelin-1: Role of NADPH oxidase, uncoupled eNOS and PKC.
Chronic administration of the most abundant dietary flavonoid quercetin exerts antihypertensive effects and improves endothelial function. We have investigated the effects of quercetin and its methylated metabolite isorhamnetin (1-10microM) on endothelial dysfunction and superoxide (O(2*)(-)) production induced by endothelin-1 (ET-1, 10nM). ET-1 increased the contractile response induced by phenylephrine and reduced the relaxant responses to acetylcholine in phenylephrine contracted intact aorta, and these effects were prevented by co-incubation with quercetin, isorhamnetin or chelerythrine (protein kinase C (PKC) inhibitor). This endothelial dysfunction was also improved by superoxide dismutase (SOD), apocynin (NADPH oxidase inhibitor) and sepiapterin (tetrahydrobiopterin synthesis substrate). Furthermore, ET-1 increased intracellular O(2*)(-) production in all layers of the vessel, protein expression of NADPH oxidase subunit p47(phox) without affecting p22(phox) expression and lucigenin-enhanced chemiluminescence signal stimulated by calcium ionophore A23187. All these changes were prevented by both quercetin and isorhamnetin. Moreover, apocynin, endothelium denudation and N(G)-nitro-l-arginine methylester (l-NAME, nitric oxide synthase inhibitor) suppressed the ET-1-induced increase in A23187-stimulated O(2*)(-) generation. Moreover, quercetin but not isorhamnetin, inhibited the increased PKC activity induced by ET-1. Taken together these results indicate that ET-1-induced NADPH oxidase up-regulation and eNOS uncoupling via PKC leading to endothelial dysfunction and these effects were prevented by quercetin and isorhamnetin. Topics: Animals; Antihypertensive Agents; Endothelin-1; Endothelium, Vascular; Enzyme Inhibitors; Flavonols; Male; NADPH Oxidases; Nitric Oxide Synthase Type III; Protein Kinase C; Quercetin; Rats; Rats, Inbred SHR; Rats, Wistar; Superoxides | 2009 |