endomorphin-2 has been researched along with naltrindole* in 7 studies
7 other study(ies) available for endomorphin-2 and naltrindole
Article | Year |
---|---|
Opposite effects of neuropeptide FF on central antinociception induced by endomorphin-1 and endomorphin-2 in mice.
Neuropeptide FF (NPFF) is known to be an endogenous opioid-modulating peptide. Nevertheless, very few researches focused on the interaction between NPFF and endogenous opioid peptides. In the present study, we have investigated the effects of NPFF system on the supraspinal antinociceptive effects induced by the endogenous µ-opioid receptor agonists, endomorphin-1 (EM-1) and endomorphin-2 (EM-2). In the mouse tail-flick assay, intracerebroventricular injection of EM-1 induced antinociception via µ-opioid receptor while the antinociception of intracerebroventricular injected EM-2 was mediated by both µ- and κ-opioid receptors. In addition, central administration of NPFF significantly reduced EM-1-induced central antinociception, but enhanced EM-2-induced central antinociception. The results using the selective NPFF1 and NPFF2 receptor agonists indicated that the EM-1-modulating action of NPFF was mainly mediated by NPFF2 receptor, while NPFF potentiated EM-2-induecd antinociception via both NPFF1 and NPFF2 receptors. To further investigate the roles of µ- and κ-opioid systems in the opposite effects of NPFF on central antinociception of endomprphins, the µ- and κ-opioid receptors selective agonists DAMGO and U69593, respectively, were used. Our results showed that NPFF could reduce the central antinociception of DAMGO via NPFF2 receptor and enhance the central antinociception of U69593 via both NPFF1 and NPFF2 receptors. Taken together, our data demonstrate that NPFF exerts opposite effects on central antinociception of endomorphins and provide the first evidence that NPFF potentiate antinociception of EM-2, which might result from the interaction between NPFF and κ-opioid systems. Topics: Adamantane; Animals; Benzeneacetamides; Dipeptides; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Injections, Intraventricular; Male; Mice; Naltrexone; Nociception; Oligopeptides; Pyrrolidines | 2014 |
[Analysis of central mechanisms involved in gastric mucosal integrity].
Beta-endorphin, deltorphin II, [D-Ala2, Phe4, Gly5-ol-enkephalin (DAGO) as well as endomorphin-1 and endomorphin-2 injected intracerebroventricularly (i.c.v.) induced gastroprotective action. It has been raised that endogenous opioids may have a central role in maintaining gastric mucosal integrity. Therefore we aimed to study the role of endogenous opioid system in the gastroprotective action induced by activation of alpha 2-adrenoceptors, nociceptin- and cannabinoid-receptors. Our results suggest that the non-selective opioid receptor antagonist naloxone (27 nmol i.c.v.) and the delta-opioid receptor antagonist naltrindole (5 nmol i.c.v.) abolished the mucosal protective effect of alpha 2-adrenoceptor agonists clonidine (470 pmol i.c.v.) and rilmenidine (45 pmol i.c.v.), nociceptin (1 nmol i.c.v.) and the cannabinoid receptor agonist anandamide (110 nmol i.c.v.). Based on our findings it can be raised that opioid system besides its well known regulatory functions might be involved in maintenance of gastric mucosal integrity. Topics: Animals; Arachidonic Acids; beta-Endorphin; Clonidine; Endocannabinoids; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Ethanol; Excitatory Amino Acids; Gastric Mucosa; Injections, Intraventricular; Male; Naloxone; Naltrexone; Narcotic Antagonists; Neurotransmitter Agents; Nociceptin; Oligopeptides; Opioid Peptides; Oxazoles; Polyunsaturated Alkamides; Rats; Rats, Wistar; Receptors, Opioid; Rilmenidine; Stomach Ulcer | 2008 |
The spinal antinociceptive effects of endomorphins in rats: behavioral and G protein functional studies.
Endomorphin-1 and endomorphin-2 are endogenous peptides that are highly selective for mu-opioid receptors. However, studies of their functional efficacy and selectivity are controversial. In this study, we systematically compared the effects of intrathecal (i.t.) administration of endomorphin-1 and -2 on nociception assays and G protein activation with those of [d-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO), a highly effective peptidic mu-opioid receptor agonist.. Male Sprague-Dawley rats were used. Acute and inflammatory pain models were used to compare the duration and magnitude of antinociception. Agonist-stimulated [(35)S]GTP gamma S binding was used to observe the functional activity at the level of the receptor-G protein in both spinal cord and thalamic membranes. In addition, antagonists selective for each receptor type were used to verify the functional selectivity of endomorphins in the rat spinal cord.. After i.t. administration, endomorphin-1 and -2 produced less antinociceptive effects than DAMGO in the model of acute pain. Concentration-response curves for DAMGO-, endomorphin-1-, and endomorphin-2-stimulated [(35)S]GTP gamma S binding revealed that both endomorphin-1 and -2 produced less G protein activation (i.e., approximately 50%-60%) than DAMGO did in the membranes of spinal cord and thalamus. In addition, i.t. endomorphin-induced antinociception was blocked by mu-opioid receptor selective dose of naltrexone (P < 0.05), but not by delta- and kappa-opioid receptor antagonists, naltrindole and nor-binaltorphimine (P > 0.05).. Endomorphins are partial agonists for G protein activation at spinal and thalamic mu-opioid receptors. Both in vivo and in vitro measurements together suggest that DAMGO is more effective than endomorphins. Spinal endomorphins' antinociceptive efficacy may range between 53% and 84% depending on the intensity and modality of the nociceptive stimulus. Topics: Analgesics; Analgesics, Opioid; Animals; Behavior, Animal; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Partial Agonism; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Guanosine 5'-O-(3-Thiotriphosphate); Injections, Spinal; Male; Naltrexone; Narcotic Antagonists; Oligopeptides; Pain; Pain Measurement; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu; Spinal Cord; Sulfur Radioisotopes; Thalamus; Time Factors | 2008 |
Differentiation of opioid receptor preference by [Dmt1]endomorphin-2-mediated antinociception in the mouse.
The potent opioid [Dmt1]endomorphin-2 (Dmt-Pro-Phe-Phe-NH2) differentiated between the opioid receptor subtypes responsible for the antinociception elicited by endomorphin-2 in mice. Antinociception, induced by the intracerebroventricular administration of [Dmt1]endomorphin-2 and inhibited by various opioid receptor antagonists [naloxone, naltrindole, beta-funaltrexamine, naloxonazine], was determined by the tail-flick (spinal effect) and hot-plate (supraspinal effect) tests. The opioid receptor subtypes involved in [Dmt1]endomorphin-2-induced antinociception differed between these in vivo model paradigms: naloxone (non-specific opioid receptor antagonist) and beta-funaltrexamine (irreversible mu1/mu2-opioid receptor antagonist) blocked antinociception in both tests, although stronger inhibition occurred in the hot-plate than the tail-flick test suggesting involvement of other opioid receptors. Consequently, we applied naloxonazine (mu1-opioid receptor antagonist) that significantly blocked the effect in the hot-plate test and naltrindole (delta-opioid receptor antagonist), which was only effective in the tail-flick test. The data indicated that [Dmt1]endomorphin-2-induced spinal antinociception was primarily mediated by both mu2- and delta-opioid receptors, while a supraspinal mechanism involved only mu1/mu2-subtypes. Topics: Analgesia; Animals; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Hot Temperature; Injections, Intraventricular; Injections, Subcutaneous; Male; Mice; Naloxone; Naltrexone; Nociceptors; Oligopeptides; Pain; Pain Measurement; Receptors, Opioid, delta; Receptors, Opioid, mu; Tail; Time Factors | 2005 |
Nonopioidergic mechanism mediating morphine-induced antianalgesia in the mouse spinal cord.
Intrathecal (i.t.) pretreatment with a low dose (0.3 nmol) of morphine causes an attenuation of i.t. morphine-produced analgesia; the phenomenon has been defined as morphine-induced antianalgesia. The opioid-produced analgesia was measured with the tail-flick (TF) test in male CD-1 mice. Intrathecal pretreatment with low dose (0.3 nmol) of morphine time dependently attenuated i.t. morphine-produced (3.0 nmol) TF inhibition and reached a maximal effect at 45 min. Intrathecal pretreatment with morphine (0.009-0.3 nmol) for 45 min also dose dependently attenuated morphine-produced TF inhibition. The i.t. morphine-induced antianalgesia was dose dependently blocked by the nonselective mu-opioid receptor antagonist (-)-naloxone and by its nonopioid enantiomer (+)-naloxone, but not by endomorphin-2-sensitive mu-opioid receptor antagonist 3-methoxynaltrexone. Blockade of delta-opioid receptors, kappa-opioid receptors, and N-methyl-D-aspartate (NMDA) receptors by i.t. pretreatment with naltrindole, nor-binaltorphimine, and (-)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate (MK-801), respectively, did not affect the i.t. morphine-induced antianalgesia. Intrathecal pretreatment with antiserum against dynorphin A(1-17), [Leu]-enkephalin, [Met]-enkephalin, beta-endorphin, cholecystokinin, or substance P also did not affect the i.t. morphine-induced antianalgesia. The i.t. morphine pretreatment also attenuated the TF inhibition produced by opioid muagonist [D-Ala2, N-Me-Phe4,Gly-ol5]-enkephalin, delta-agonist deltorphin II, and kappa-agonist U50,488H. It is concluded that low doses (0.009-0.3 nmol) of morphine given i.t. activate an antianalgesic system to attenuate opioid mu-, delta-, and kappa-agonist-produced analgesia. The morphine-induced antianalgesia is not mediated by the stimulation of opioid mu-, delta-, or kappa-receptors or NMDA receptors. Neuropeptides such as dynorphin A(1-17), [Leu]-enkephalin, [Met]-enkephalin, beta-endorphin, cholecystokinin, and substance P are not involved in this low-dose morphine-induced antianalgesia. Topics: Analgesia; Animals; beta-Endorphin; Dizocilpine Maleate; Drug Interactions; Drug Tolerance; Dynorphins; Enkephalins; Male; Mice; Morphine; Naloxone; Naltrexone; Oligopeptides; Pain; Pain Measurement; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Spinal Cord; Substance P | 2004 |
Endomorphins 1 and 2, endogenous mu-opioid receptor agonists, impair passive avoidance learning in mice.
The effects of intracerebroventricular administration of endomorphin-1 and endomorphin-2, endogenous mu-opioid receptor agonists, on passive avoidance learning associated with long-term memory were investigated in mice. Endomorphin-1 (10 and 17.5 microg) and endomorphin-2 (17.5 microg) produced a significant decrease in step-down latency in a passive avoidance learning task. beta-Funaltrexamine (5 microg) almost completely reversed the endomorphin-1 (17.5 microg)- and endomorphin-2 (17.5 microg)-induced shortening of step-down latency, although neither naltrindole (4 ng) nor nor-binaltorphimine (4 microg) produced any significant effects on the effects of endomorphins 1 and 2. These results suggest that endomorphins 1 and 2 impair long-term memory through the mediation of mu-opioid receptors in the brain. Topics: Analgesics, Opioid; Animals; Avoidance Learning; Behavior, Animal; Dose-Response Relationship, Drug; Male; Mice; Naltrexone; Narcotic Antagonists; Oligopeptides; Receptors, Opioid, mu | 2001 |
Endomorphin-1 and endomorphin-2 activate mu-opioid receptors in myenteric neurons of the guinea-pig small intestine.
The novel opioid tetrapeptides, endomorphin-1 and endomorphin-2, recently isolated from bovine and human brain bind with high affinity and selectivity to central mu-opioid receptors. In the digestive tract, a comprehensive pharmacological analysis of the receptors involved in endomorphin action has not been reported. In this study, we analyzed the effects of endomorphin-1 and endomorphin-2 on longitudinal muscle-myenteric plexus preparations (LMMPs) from the guinea-pig ileum. Both peptides (30 pM - 1 microM) inhibited (-log EC50 values: 8.61 and 8.59, respectively) the amplitude of electrically-induced twitch contractions in a concentration-dependent fashion, up to its abolition. Conversely, in unstimulated LMMPs, they failed to affect contractions to applied acetylcholine (100 nM). In stimulated LMMPs, the highly selective mu-opioid receptor antagonist, D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2 (CTOP), caused a concentration-dependent (30 nM-1 microM), parallel rightward shift of endomorphin-1 and endomorphin-2 inhibitory curves, without depression of their maximum. Following Schild analysis, calculated pA2 values were 7.81 and 7.85, respectively, with slopes not different from unity. Concentration-response curves to both peptides were not affected by 30 nM naltrindole (a selective delta-receptor antagonist) or 30 nM nor-binaltorphimine (a selective kappa-receptor antagonist). These results demonstrate that endomorphins selectively activate mu-opioid receptors located on excitatory myenteric plexus neurons, and that they act as full agonists. Topics: Acetylcholine; Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Electric Stimulation; Female; Guinea Pigs; Ileum; Intestine, Small; Male; Myenteric Plexus; Naltrexone; Oligopeptides; Receptors, Opioid, mu; Regression Analysis; Somatostatin | 1998 |