endomorphin-2 has been researched along with naloxonazine* in 16 studies
16 other study(ies) available for endomorphin-2 and naloxonazine
Article | Year |
---|---|
The effects of endomorphins on striatal [3H]GABA release induced by electrical stimulation: an in vitro superfusion study in rats.
The endomorphins (EM1 and EM2) are selective endogenous ligands for mu-opioid receptors (MOR1 and MOR2) with neurotransmitter and neuromodulator roles in mammals. In the present study we investigated the potential actions of EMs on striatal GABA release and the implication of different MORs in these processes. Rat striatal slices were preincubated with tritium-labelled GABA ([(3)H]GABA), pretreated with selective MOR1 and MOR2 antagonist beta-funaltrexamine and selective MOR1 antagonist naloxonazine and then superfused with the selective MOR agonists, EM1 and EM2. EM1 significantly decreased the striatal [(3)H]GABA release induced by electrical stimulation. Beta-funaltrexamine antagonized the inhibitory action of EM1, but naloxonazine did not affect it considerably. EM2 was ineffective, even in case of specific enzyme inhibitor diprotin A pretreatment. The results demonstrate that EM1 decreases GABA release in the basal ganglia through MOR2, while EM2 does not influence it. Topics: Animals; Corpus Striatum; Dipeptidyl-Peptidase IV Inhibitors; Electric Stimulation; gamma-Aminobutyric Acid; Male; Naloxone; Naltrexone; Oligopeptides; Perfusion; Rats; Rats, Wistar; Receptors, Opioid, mu; Tritium | 2009 |
Possible involvement of dynorphin A release via mu1-opioid receptor on supraspinal antinociception of endomorphin-2.
It has been demonstrated that the antinociception induced by i.t. or i.c.v. administration of endomorphins is mediated through mu-opioid receptors. Moreover, though endomorphins do not have appreciable affinity for kappa-opioid receptors, pretreatment with the kappa-opioid receptor antagonist nor-binaltorphimine markedly blocks the antinociception induced by i.c.v.- or i.t.-injected endomorphin-2, but not endomorphin-1. These evidences propose the hypothesis that endomorphin-2 may initially stimulate the mu-opioid receptors, which subsequently induces the release of dynorphins acting on kappa-opioid receptors to produce antinociception. The present study was performed to determine whether the release of dynorphins by i.c.v.-administered endomorphin-2 is mediated through mu-opioid receptors for producing antinociception. Intracerebroventricular pretreatment with an antiserum against dynorphin A, but not dynorphin B or alpha-neo-endorphin, and s.c. pretreatment with kappa-opioid receptor antagonist nor-binaltorphimine dose-dependently attenuated the antinociception induced by i.c.v.-administered endomorphin-2, but not endomorphin-1 and DAMGO. The attenuation of endomorphin-2-induced antinociception by pretreatment with antiserum against dynorphin A or nor-binaltorphimine was dose-dependently eliminated by additional s.c. pretreatment with a selective mu-opioid receptor antagonist beta-funaltrexamine or a selective mu1-opioid receptor antagonist naloxonazine at ultra low doses, which are inactive against micro-opioid receptor agonists in antinociception, suggesting that endomorphin-2 stimulates distinct subclass of micro1-opioid receptor that induces the release of dynorphin A acting on kappa-opioid receptors in the brain. It concludes that the antinociception induced by supraspinally administered endomorphin-2 is in part mediated through the release of endogenous kappa-opioid peptide dynorphin A, which is caused by the stimulation of distinct subclass of micro1-opioid receptor. Topics: Analgesics; Animals; Dynorphins; Endorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Immune Sera; Injections, Intraventricular; Male; Mice; Naloxone; Naltrexone; Oligopeptides; Protein Precursors; Receptors, Opioid, kappa; Receptors, Opioid, mu | 2008 |
A Tyr-W-MIF-1 analog containing D-Pro2 discriminates among antinociception in mice mediated by different classes of mu-opioid receptors.
The antagonism by Tyr-D-Pro-Trp-Gly-NH2 (D-Pro2-Tyr-W-MIF-1), a Tyr-Pro-Trp-Gly-NH2 (Tyr-W-MIF-1) analog, of the antinociception induced by the mu-opioid receptor agonists Tyr-W-MIF-1, [D-Ala2,NMePhe4,Gly(ol)5]-enkephalin (DAMGO), Tyr-Pro-Trp-Phe-NH2 (endomorphin-1), and Tyr-Pro-Phe-Phe-NH2 (endomorphin-2) was studied with the mouse tail-flick test. D-Pro2-Tyr-W-MIF-1 (0.5-3 nmol) given intracerebroventricularly (i.c.v.) had no effect on the thermal nociceptive threshold. High doses of D-Pro2-Tyr-W-MIF-1 (4-16 nmol) administered i.c.v. produced antinociception with a low intrinsic activity of about 30% of the maximal possible effect. D-Pro2-Tyr-W-MIF-1 (0.25-2 nmol) co-administered i.c.v. showed a dose-dependent attenuation of the antinociception induced by Tyr-W-MIF-1 or DAMGO without affecting endomorphin-2-induced antinociception. A 0.5 nmol dose of D-Pro2-Tyr-W-MIF-1 significantly attenuated Tyr-W-MIF-1-induced antinociception but not DAMGO- or endomorphin-1-induced antinociception. The highest dose (2 nmol) of D-Pro2-Tyr-W-MIF-1 almost completely attenuated Tyr-W-MIF-1-induced antinociception. However, that dose of D-Pro2-Tyr-W-MIF-1 significantly but not completely attenuated endomorphin-1 or DAMGO-induced antinociception, whereas the antinociception induced by endomorphin-2 was still not affected by D-Pro2-Tyr-W-MIF-1. Pretreatment i.c.v. with various doses of naloxonazine, a mu1-opioid receptor antagonist, attenuated the antinociception induced by Tyr-W-MIF-1, endomorphin-1, endomorphin-2, or DAMGO. Judging from the ID50 values for naloxonazine against the antinociception induced by the mu-opioid receptor agonists, the antinociceptive effect of Tyr-W-MIF-1 is extremely less sensitive to naloxonazine than that of endomorphin-1 or DAMGO. In contrast, endomorphin-2-induced antinociception is extremely sensitive to naloxonazine. The present results clearly suggest that D-Pro2-Tyr-W-MIF-1 is a selective antagonist for the mu2-opioid receptor in the mouse brain. D-Pro2-Tyr-W-MIF-1 may also discriminate between Tyr-W-MIF-1-induced antinociception and the antinociception induced by endomorphin-1 or DAMGO, which both show a preference for the mu2-opioid receptor in the brain. Topics: Analgesics, Opioid; Animals; Brain; Disease Models, Animal; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Hot Temperature; Injections, Intraventricular; Male; Mice; MSH Release-Inhibiting Hormone; Naloxone; Narcotic Antagonists; Oligopeptides; Pain; Pain Measurement; Pain Threshold; Reaction Time; Receptors, Opioid, mu; Somatostatin; Time Factors | 2007 |
The effects of endomorphins and diprotin A on striatal dopamine release induced by electrical stimulation-an in vitro superfusion study in rats.
The endomorphins (EM1: Tyr-Pro-Trp-Phe-NH2, and EM2: Tyr-Pro-Phe-Phe-NH2) are recently discovered endogenous ligands for mu-opioid receptors (MORs) with role of neurotransmitters or neuromodulators in mammals. Cessation of their physiological action may be effected through rapid enzymatic degradation by the dipeptidyl-peptidase IV (DPPIV) found in the brain synaptic membranes. An in vitro superfusion system was utilized to investigate the actions of EM1, EM2 and specific DPPIV inhibitor diprotin A on the striatal release of dopamine (DA) induced by electrical stimulation in rats. The involvement of the different MORs (MOR1 and MOR2) in this process was studied by pretreatment with MOR antagonists beta-funaltrexamine (a MOR1 and MOR2 antagonist) and naloxonazine (a MOR1 antagonist). EM1 significantly increased the tritium-labelled dopamine DA release induced by electrical stimulation. EM2 was effective only when the slices were pretreated with diprotin A. beta-Funaltrexamine antagonized the stimulatory effects of both EM1 and EM2. The administration of naloxonazine did not appreciably influence the action of EM1, but blocked the action of EM2, at least when the slices were pretreated with diprotin A. These data suggest that both EM1 and EM2 increase DA release from the striatum and, though diprotin A does not affect the action of EM1, it inhibits the enzymatic degradation of EM2. The DA-stimulating action induced by EM1 seems to be mediated by MOR2, while that evoked by EM2 appears to be transmitted by MOR1. Topics: Animals; Corpus Striatum; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Dopamine; Electric Stimulation; Infusion Pumps; Male; Naloxone; Naltrexone; Narcotic Antagonists; Neural Pathways; Oligopeptides; Organ Culture Techniques; Presynaptic Terminals; Radioligand Assay; Rats; Rats, Wistar; Substantia Nigra; Synaptic Transmission | 2006 |
Differentiation of opioid receptor preference by [Dmt1]endomorphin-2-mediated antinociception in the mouse.
The potent opioid [Dmt1]endomorphin-2 (Dmt-Pro-Phe-Phe-NH2) differentiated between the opioid receptor subtypes responsible for the antinociception elicited by endomorphin-2 in mice. Antinociception, induced by the intracerebroventricular administration of [Dmt1]endomorphin-2 and inhibited by various opioid receptor antagonists [naloxone, naltrindole, beta-funaltrexamine, naloxonazine], was determined by the tail-flick (spinal effect) and hot-plate (supraspinal effect) tests. The opioid receptor subtypes involved in [Dmt1]endomorphin-2-induced antinociception differed between these in vivo model paradigms: naloxone (non-specific opioid receptor antagonist) and beta-funaltrexamine (irreversible mu1/mu2-opioid receptor antagonist) blocked antinociception in both tests, although stronger inhibition occurred in the hot-plate than the tail-flick test suggesting involvement of other opioid receptors. Consequently, we applied naloxonazine (mu1-opioid receptor antagonist) that significantly blocked the effect in the hot-plate test and naltrindole (delta-opioid receptor antagonist), which was only effective in the tail-flick test. The data indicated that [Dmt1]endomorphin-2-induced spinal antinociception was primarily mediated by both mu2- and delta-opioid receptors, while a supraspinal mechanism involved only mu1/mu2-subtypes. Topics: Analgesia; Animals; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Hot Temperature; Injections, Intraventricular; Injections, Subcutaneous; Male; Mice; Naloxone; Naltrexone; Nociceptors; Oligopeptides; Pain; Pain Measurement; Receptors, Opioid, delta; Receptors, Opioid, mu; Tail; Time Factors | 2005 |
Attenuation of aortic baroreflex responses by microinjections of endomorphin-2 into the rostral ventrolateral medullary pressor area of the rat.
The presence of mu-opioid receptors and endomorphins has been demonstrated in the general area encompassing the rostral ventrolateral medullary pressor area (RVLM). This investigation was carried out to test the hypothesis that endomorphins in the RVLM may have a modulatory role in regulating cardiovascular function. Blood pressure and heart rate (HR) were recorded in urethane-anesthetized male Wistar rats. Unilateral microinjections of endomorphin-2 (0.0125-0.5 mmol/l) into the RVLM elicited decreases in mean arterial pressure (16-30 mmHg) and HR (12-36 beats/min), which lasted for 2-4 min. Bradycardia was not vagally mediated. The effects of endomorphin-2 were mediated via mu-opioid receptors because prior microinjections of naloxonazine (1 mmol/l) abolished these responses; the blocking effect of naloxonazine lasted for 15-20 min. Unilateral stimulations of aortic nerve for 30 s (at frequencies of 5, 10, and 25 pulses/s; each pulse 0.5 V and 1-ms duration) elicited depressor and bradycardic responses. These responses were significantly attenuated by microinjections of endomorphin-2 (0.2 and 0.4 mmol/l). The inhibitory effect of endomorphin-2 on baroreflex responses was prevented by prior microinjections of naloxonazine. Microinjections of naloxonazine alone did not affect either baseline blood pressure and HR or baroreflex responses. These results indicate that endomorphin-2 elicits depressor and bradycardic responses and inhibits baroreflex function when injected into the RVLM. These effects are consistent with the known hyperpolarizing effect of opioid peptides on RVLM neurons. Topics: Animals; Aorta; Baroreflex; Blood Pressure; Dose-Response Relationship, Drug; Electric Stimulation; Heart Rate; Male; Medulla Oblongata; Microinjections; Naloxone; Nervous System Physiological Phenomena; Oligopeptides; Rats; Rats, Wistar; Receptors, Opioid, mu; Vagus Nerve | 2005 |
Supraspinal anti-allodynic and rewarding effects of endomorphins in rats.
Two potent endogenous opioid peptides, endomorphin-1 (EM-1) and -2 (EM-2), which are selective micro-opioid agonists, have been identified from bovine and human brain. These endomorphins were demonstrated to produce a potent anti-allodynic effect at spinal level. In the present study, we further investigated their supraspinal anti-allodynic effects and rewarding effects. In a neuropathic pain model (sciatic nerve crush in rats), EM-1 and -2 (15 microg, i.c.v.) both showed significant suppressive effects in the cold-water allodynia test, but EM-1 showed a longer duration than EM-2. Naltrexone (NTX; 15 microg) and naloxonazine (NLZ; 15 microg) were both able to completely block the anti-allodynic effects of EM-1 and -2. In the tests of conditioned place preference (CPP), only EM-2 at the dose of 30 microg showed significant positive rewarding effect, whereas both endomorphins did not induce any reward at the dose of 15 microg. Due to the low solubility and the undesired effect (barrel rotation of the body trunk), EM-1 was not tested for the dose of 30 microg in the CPP tests. It was also found that acute EM-2 (30 microg) administration increased dopamine turnover in the shell of nucleus accumbens in the microdialysis experiments. From these results, it may suggest that EM-1 and -2 could be better supraspinal anti-allodynic agents compared with the other opioid drugs, although they may also induce rewarding. Topics: Analgesics, Opioid; Animals; Male; Naloxone; Naltrexone; Narcotic Antagonists; Nerve Compression Syndromes; Oligopeptides; Pain; Pain Management; Pain Measurement; Rats; Rats, Sprague-Dawley | 2004 |
Depressor and bradycardic responses to microinjections of endomorphin-2 into the NTS are mediated via ionotropic glutamate receptors.
The presence of endomorphin-like immunoreactivity has been reported in the nucleus tractus solitarius (NTS). It was hypothesized that endomorphins may play a role in cardiovascular regulation in the medial subnucleus of the NTS (mNTS). Endomorphin-2 (E-2, 0.1-4 mmol/l) was microinjected (100 nl) into the mNTS of urethane-anesthetized, artificially ventilated, adult male Wistar rats. E-2 (0.2 mmol/l) elicited decreases in mean arterial pressure (40 +/- 3.5 mmHg) and heart rate (50 +/- 7.0 beats/min). These responses were blocked by prior microinjections of naloxonazine (1 mmol/l) into the mNTS. Responses to microinjections of E-2 into the mNTS were abolished by prior combined microinjections of d-2-amino-7-phosphonoheptanoic acid (an NMDA receptor antagonist, 5 mmol/l) and 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide disodium (a non-NMDA receptor antagonist, 2 mmol/l) into the mNTS. These results were confirmed by extracellular neuronal recordings. Blockade of GABA receptors in the mNTS by prior combined microinjections of gabazine (a GABA(A) receptor antagonist, 2 mmol/l) and 2-hydroxysaclofen (a GABA(B) receptor antagonist, 100 mmol/l) also blocked the responses to E-2. It was concluded that 1) the depressor and bradycardic responses to microinjections of E-2 into the mNTS are mediated via micro(1)-opioid receptors as well as ionotropic glutamate receptors, 2) GABAergic neurons in the mNTS, which may inhibit the release of glutamate from nerve terminals, are inhibited by E-2 via micro(1)-opioid receptors, and 3) disinhibition caused by the inhibition of GABAergic neurons by E-2 may result in an increase in the glutamate release from nerve terminals, which, in turn, may elicit depressor and bradycardic responses. Topics: Analgesics, Opioid; Animals; Blood Pressure; Dose-Response Relationship, Drug; GABA Antagonists; Heart Rate; Male; Microinjections; Naloxone; Narcotic Antagonists; Oligopeptides; Parasympathetic Nervous System; Rats; Rats, Wistar; Receptors, GABA; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Solitary Nucleus; Stereotaxic Techniques; Vagus Nerve | 2004 |
The antitussive effects of endomorphin-1 and endomorphin-2 in mice.
The antitussive effects of endomorphin-1 and endomorphin-2, endogenous mu-opioid receptor agonists, on capsaicin-induced coughs were examined in mice. Endomorphin-2, at doses of 3, 10 and 30 microg, i.c.v., dose-dependently inhibited the number of capsaicin-induced coughs. However, the same doses (3, 10 and 30 microg) of endomorphin-1 injected with i.c.v. had no significant effects on the number of capsaicin-induced coughs. The antitussive effect of endomorphin-2 was significantly reduced by beta-funaltrexamine, a mu(1)/mu(2)-opioid receptor antagonist, but not naloxonazine, a selective mu(1)-opioid receptor antagonist. Furthermore, the antitussive effect of endomorphin-2 was also partially but significantly reduced by nor-binaltorphimine, a selective kappa-opioid receptor antagonist. These results indicate that the administration of the endogenous mu-opioid ligand endomorphin-2, but not endomorphin-1, into the brain produces an antitussive effect via mainly naloxonazine-insensitive mu-opioid receptors, namely mu(2)-opioid receptors and partially kappa-opioid receptors. Topics: Animals; Antitussive Agents; Capsaicin; Cough; Dose-Response Relationship, Drug; Injections, Intraventricular; Male; Mice; Mice, Inbred ICR; Naloxone; Naltrexone; Oligopeptides; Receptors, Opioid, kappa; Receptors, Opioid, mu | 2003 |
Involvement of mu(1)-opioid receptors and cholinergic neurotransmission in the endomorphins-induced impairment of passive avoidance learning in mice.
The effects of naloxonazine, a mu(1)-opioid receptor antagonist, and physostigmine, a cholinesterase inhibitor, on the endomorphins-induced impairment of passive avoidance learning were investigated in mice. Endomorphin-1 (10 microg) and endomorphin-2 (10 microg) significantly impaired passive avoidance learning, while naloxonazine (35 mg/kg, s.c.), a mu(1)-opioid receptor antagonist, which alone failed to influence passive avoidance learning significantly inhibited the endomorphin-1 (10 microg)- but not endomorphin-2 (10 microg)-induced disturbance of such learning. A rather nonselective higher dose (50 mg/kg, s.c.) of naloxonazine almost completely antagonized the endomorphin-1 (10 microg)- and endomorphin-2 (10 microg)-induced impairment of passive avoidance learning. In contrast, physostigmine (0.025 and 0.05 mg/kg, i.p.) significantly reversed the endomorphin-1 (10 microg)- and endomorphin-2 (10 microg)-induced disturbance of passive avoidance learning, whereas physostigmine (0.025 and 0.05 mg/kg, i.p.) alone did not influence such learning. These results suggest that endomorphin-1 but not endomorphin-2 impairs learning and memory resulting from cholinergic dysfunction, and from activation of mu(1)-opioid receptors. Topics: Animals; Avoidance Learning; Cholinesterase Inhibitors; Injections, Intraventricular; Male; Memory; Mice; Naloxone; Narcotic Antagonists; Oligopeptides; Parasympathetic Nervous System; Physostigmine; Receptors, Opioid, mu; Synaptic Transmission | 2002 |
Differential antagonism of endomorphin-1 and endomorphin-2 supraspinal antinociception by naloxonazine and 3-methylnaltrexone.
To determine if different subtypes of mu-opioid receptors were involved in antinociception induced by endomorphin-1 and endomorphin-2, the effect of pretreatment with various mu-opioid receptor antagonists beta-funaltrexamine, naloxonazine and 3-methylnaltrexone on the inhibition of the paw-withdrawal induced by endomorphin-1 and endomorphin-2 given intracerebroventricularly (i.c.v.) were studied in ddY male mice. The inhibition of the paw-withdrawal induced by i.c.v. administration of endomorphin-1, endomorphin-2 or DAMGO was completely blocked by the pretreatment with a selective mu-opioid receptor antagonist beta-funaltrexamine (40 mg/kg), indicating that the antinociception induced by all these peptides are mediated by the stimulation of mu-opioid receptors. However, naloxonazine, a mu1-opioid receptor antagonist pretreated s.c. for 24h was more effective in blocking the antinociception induced by endomorphin-2, than by endomorphin-1 or DAMGO given i.c.v. Pretreatment with a selective morphine-6 beta-glucuronide blocker 3-methylnaltrexone 0.25mg/kg given s.c. for 25 min or co-administration of 3-methylnaltrexone 2.5 ng given i.c.v. effectively attenuated the antinociception induced by endomorphin-2 given i.c.v. and co-administration of 3-methylnaltrexone shifted the dose-response curves for endomorphin-2 induced antinociception to the right by 4-fold. The administration of 3-methylnaltrexone did not affect the antinociception induced by endomorphin-1 or DAMGO given i.c.v. Our results indicate that the antinociception induced by endomorphin-2 is mediated by the stimulation of subtypes of mu-opioid receptor, which is different from that of mu-opioid receptor subtype stimulation by endomorphin-1 and DAMGO. Topics: Analgesics; Animals; Dose-Response Relationship, Drug; Injections, Spinal; Male; Mice; Naloxone; Naltrexone; Oligopeptides; Pain; Pain Measurement; Quaternary Ammonium Compounds; Reflex; Time Factors | 2002 |
Differential antinociceptive effects induced by intrathecally administered endomorphin-1 and endomorphin-2 in the mouse.
Two highly selective mu-opioid receptor agonists, endomorphin-1 and endomorphin-2, have been identified and postulated to be endogenous ligands for mu-opioid receptors. Intrathecal (i.t.) administration of endomorphin-1 and endomorphin-2 at doses from 0.039 to 5 nmol dose-dependently produced antinociception with the paw-withdrawal test. The paw-withdrawal inhibition rapidly reached its peak at 1 min, rapidly declined and returned to the pre-injection levels in 20 min. The inhibition of the paw-withdrawal responses to endomorphin-1 and endomorphin-2 at a dose of 5 nmol observed at 1 and 5 min after injection was blocked by pretreatment with a non-selective opioid receptor antagonist naloxone (1 mg/kg, s.c.). The antinociceptive effect of endomorphin-2 was more sensitive to the mu (1)-opioid receptor antagonist, naloxonazine than that of endomorphin-1. The endomorphin-2-induced paw-withdrawal inhibition at both 1 and 5 min after injection was blocked by pretreatment with kappa-opioid receptor antagonist nor-binaltorphimine (10 mg/kg, s.c.) or the delta(2)-opioid receptor antagonist naltriben (0.6 mg/kg, s.c.) but not the delta(1)-opioid receptor antagonist 7-benzylidine naltrexone (BNTX) (0.6 mg/kg s.c.). In contrast, the paw-withdrawal inhibition induced by endomorphin-1 observed at both 1 and 5 min after injection was not blocked by naloxonazine (35 mg/kg, s.c.), nor-binaltorphimine (10 mg/kg, s.c.), naltriben (0.6 mg/kg, s.c.) or BNTX (0.6 mg/kg s.c.). The endomorphin-2-induced paw-withdrawal inhibition was blocked by the pretreatment with an antiserum against dynorphin A-(1-17) or [Met(5)]enkephalin, but not by antiserum against dynorphin B-(1-13). Pretreatment with these antisera did not affect the endomorphin-1-induced paw-withdrawal inhibition. Our results indicate that endomorphin-2 given i.t. produces its antinociceptive effects via the stimulation of mu (1)-opioid receptors (naloxonazine-sensitive site) in the spinal cord. The antinociception induced by endomophin-2 contains additional components, which are mediated by the release of dynorphin A-(1-17) and [Met(5)]enkephalin which subsequently act on kappa-opioid receptors and delta(2)-opioid receptors to produce antinociception. Topics: Analgesics; Animals; Benzylidene Compounds; Dose-Response Relationship, Drug; Dynorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Leucine; Enkephalin, Methionine; Immune Sera; Injections, Spinal; Injections, Subcutaneous; Male; Mice; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides; Pain; Pain Measurement; Pain Threshold; Peptide Fragments; Time Factors | 2001 |
Endomorphin-1 improves scopolamine-induced impairment of short-term memory via mu1-opioid receptor in mice.
The effects of intracerebroventricular injection of endomorphin-1 and 2, endogenous mu-opioid receptor agonists, on the scopolamine-induced impairment of spontaneous alternation performance associated with short-term memory were investigated in mice. Endomorphin-1 (0.03 microg) inhibited scopolamine (1 mg/kg)-induced impairment of spontaneous alternation performance without affecting total arm entries, while endomorphin-2 (0.01-10 microg) failed to significantly influence the scopolamine (1 mg/kg)-induced impairment. Endomorphin-1 (0.03 microg) itself had no marked effects on spontaneous alternation performance in intact mice. Although beta-funaltrexamine (5 microg), a mu-opioid receptor antagonist, did not significantly affect the inhibitory effects of endomorphin-1 (0.03 microg) on the scopolamine (1 mg/kg)-induced impairment, naloxonazine (35 mg/kg), a mu1-opioid receptor antagonist, significantly reversed the inhibitory effects of endomorphin-1 (0.03 microg) on the impairment. Naloxonazine (35 mg/kg) unlike beta-funaltrexamine (5 microg) did not significantly influence the scopolamine (1 mg/kg)-induced impairment of spontaneous alternation performance. These results suggest that endomorphin-1 improves the disturbance of short-term memory resulting from cholinergic dysfunction through the mediation of mu1-opioid receptors. Topics: Analgesics, Opioid; Animals; Brain; Dose-Response Relationship, Drug; Drug Interactions; Male; Maze Learning; Memory Disorders; Memory, Short-Term; Mice; Muscarinic Antagonists; Naloxone; Naltrexone; Narcotic Antagonists; Neurons; Oligopeptides; Receptors, Opioid, mu; Scopolamine | 2001 |
The antinociceptive effects of endomorphin-1 and endomorphin-2 in diabetic mice.
The antinociceptive effects of endomorphin-1 and endomorphin-2, endogenous mu-opioid receptor agonists, were examined using the tail-flick test in non-diabetic and diabetic mice. Endomorphin-1, at doses of 1 to 10 microg, i.c.v., and endomorphin-2, at doses of 3 to 30 microg, i.c.v., each dose dependently inhibited the tail-flick response in both non-diabetic and diabetic mice. There was no significant difference between the antinociceptive effects of endomorphin-1 in non-diabetic mice and diabetic mice. The antinociceptive effect of endomorphin-2 was greater in non-diabetic mice than in diabetic mice. In non-diabetic mice, the antinociceptive effects of endomorphin-1 and endomorphin-2 were significantly reduced by beta-funaltrexamine, a mu-opioid receptor antagonist, and naloxonazine, a selective mu(1)-opioid receptor antagonist, but not by naltrindole, a delta-opioid receptor antagonist, or nor-binaltorphimine, a kappa-opioid receptor antagonist. In diabetic mice, the antinociceptive effect of endomorphin-2 was significantly reduced by beta-funaltrexamine and naloxonazine. However, these micro-opioid receptor antagonists had no significant effect on the antinociceptive effect of endomorphin-1 in diabetic mice. The antinociception induced by endomorphin-1 in diabetic mice was significantly reduced by naltrindole and 7-benzylidenenaltrexon, a selective delta(1)-opioid receptor antagonist, administered i.c.v. However, nor-binaltorphimine had no significant effect on the antinociceptive effects of endomorphin-1 and endomorphin-2 in diabetic mice. These results indicate that the antinociceptive effects of endomorphin-1 and endomorphin-2 in non-diabetic mice are mediated through the activation of mu(1)-opioid receptors, whereas in diabetic mice, endomorphin-1 and endomorphin-2 may produce antinociception through different actions at delta(1)- and mu(1)-opioid receptors, respectively. Topics: Analgesics, Opioid; Animals; Diabetes Mellitus, Experimental; Injections, Intraventricular; Male; Mice; Mice, Inbred ICR; Naloxone; Naltrexone; Oligopeptides; Pain Measurement; Reaction Time; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu | 2000 |
Differential antagonism of endomorphin-1 and endomorphin-2 spinal antinociception by naloxonazine and 3-methoxynaltrexone.
To determine the role of spinal mu-opioid receptor subtypes in antinociception induced by intrathecal (i.t.) injection of endomorphin-1 and -2, we assessed the effects of beta-funaltrexamine (a selective mu-opioid receptor antagonist) naloxonazine (a selective antagonist at the mu(1)-opioid receptor) and a novel receptor antagonist (3-methoxynaltrexone) using the paw-withdrawal test. Antinociception of i.t. endomorphins and [D-Ala(2), MePhe(4), Gly(ol)(5)]enkephalin (DAMGO) was completely reversed by pretreatment with beta-funaltrexamine (40 mg/kg s.c.). Pretreatment with a variety of doses of i.t. or s.c. naloxonazine 24 h before testing antagonized the antinociception of endomorphin-1, -2 and DAMGO. Judging from the ID(50) values of naloxonazine, the antinociceptive effect of endomorphin-2 was more sensitive to naloxonazine than that of endomorphin-1 or DAMGO. The selective morphine-6beta-glucuronide antagonist, 3-methoxynaltrexone, which blocked endomorphin-2-induced antinociception at each dose (0.25 mg/kg s.c. or 2.5 ng i.t.) that was inactive against DAMGO, did not affect endomorphin-1-induced antinociception but shifted the dose-response curve of endomorphin-2 3-fold to the right. These findings may be interpreted as indicative of the existence of a novel mu-opioid receptor subtype in spinal sites, where antinociception of morphine-6beta-glucuronide and endomorphin-2 are antagonized by 3-methoxynaltrexone. The present results suggest that endomorphin-1 and endomorphin-2 may produce antinociception through different subtypes of mu-opioid receptor. Topics: Analgesics, Opioid; Animals; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Heroin; Injections, Spinal; Male; Mice; Naloxone; Naltrexone; Oligopeptides; Pain Measurement; Receptors, Opioid, mu | 2000 |
Differential involvement of mu-opioid receptor subtypes in endomorphin-1- and -2-induced antinociception.
We investigated the role of mu-opioid receptor subtypes in both endomorphin-1 and endomorphin-2 induced antinociception in mice using supraspinally mediated behavior. With tail pressure as a mechanical noxious stimulus, both intracerebroventricularly (i.c.v.) and intrathecally (i.t.) injected-endomorphins produced potent and significant antinociceptive activity. Antinociception induced by i.t. and i.c.v. injection of endomorphin-1 was not reversed by pretreatment with a selective mu1-opioid receptor antagonist, naloxonazine (35 mg/kg, s.c.). By contrast, antinociception induced by i.t. and i.c.v. endomorphin-2 was significantly decreased by mu1-opioid receptor antagonist. Antinociception of both i.t. and i.c.v. endomorphin-1 and -2 was completely reversed by pretreatment with beta-funaltrexamine (40 mg/kg, s.c.). The results indicate that endomorphins may produce antinociception through the distinct mu1 and mu2 subtypes of mu-opioid receptor. Topics: Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Injections, Intraventricular; Injections, Spinal; Male; Mice; Naloxone; Naltrexone; Narcotic Antagonists; Nociceptors; Oligopeptides; Pain; Receptors, Opioid, mu; Time Factors | 1999 |