endomorphin-2 and beta-funaltrexamine

endomorphin-2 has been researched along with beta-funaltrexamine* in 22 studies

Other Studies

22 other study(ies) available for endomorphin-2 and beta-funaltrexamine

ArticleYear
Inhibitory Effect of Endomorphin-2 Binding to the μ-Opioid Receptor in the Rat Pre-Bötzinger Complex on the Breathing Activity.
    Molecular neurobiology, 2017, Volume: 54, Issue:1

    Opiates are commonly used analgesics that often cause clinical respiratory depression. However, their underlying mechanisms remain unclear. Endomorphin-2 (EM2) is a novel, endogenous tetrapeptide opioid with very high affinity and selectivity for the μ-opioid receptor (MOR). The pre-Bötzinger complex (pre-BötC) is considered the center of respiratory rhythm generation, and the synaptic connections in this region are essential for respiratory rhythm. The present study identified EM2-like immunoreactive (LI) axonal terminals in the pre-BötC of adult rats. Some EM2-LI axonal terminals made principally symmetric synapses with neurokinin 1 receptor (NK1R)-LI or MOR-LI neuronal dendritic processes in the pre-BötC. Unilateral microinjection of EM2 into the pre-BötC decreased breathing frequency and amplitude. A prior microinjection of the selective MOR antagonist β-funaltrexamine (β-FNA) into the pre-BötC prevented the effects of EM2. The present results suggest that EM2-LI axonal terminals modulate NK1R-expressing neurons in the pre-BötC and that EM2 plays a role in respiratory depression through MORs in the pre-BötC.

    Topics: Animals; Brain Stem; Male; Naltrexone; Narcotic Antagonists; Oligopeptides; Protein Binding; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu; Respiratory Mechanics

2017
Downregulation of spinal endomorphin-2 correlates with mechanical allodynia in a rat model of tibia cancer.
    Neuroscience, 2015, Feb-12, Volume: 286

    The endogenous tetrapeptide endomorphin-2 (EM2) participates in pain modulation by binding to pre- and/or post-synaptic μ opioid receptor (MOR). In the present study, pathological expression and antinociceptive effects of EM2 at the spinal level were investigated in a rat model of bone cancer pain. The model was established by introducing Walker 256 mammary gland carcinoma cells into the tibia medullary cavity. Immunohistochemical staining for EM2 showed a markedly reduced EM2-immunoreactivity in the ipsilateral spinal dorsal horn on days 6, 12 and 18 post Walker 256 inoculation (p < 0.05). Intrathecal injection (i.t.) of EM2 significantly attenuated cancer-induced mechanical allodynia (p < 0.05) which could be blocked by β-funaltrexamine (β-FNA), the μ receptor antagonist (p < 0.05). Furthermore, topical application of EM2 dose-dependently inhibited the electrically evoked C-fiber responses and postdischarge of wide dynamic range (WDR) neurons within the spinal cord (p < 0.05), and pretreatment with β-FNA abolished the hyperactivity of these neurons. Compared with the antinociception of morphine which took effect from 40 min to 100 min post application, the analgesic action of EM2 was characterized by quick onset and short-lived efficacy (p < 0.05), being most potent at 10 min and lasting about 20 min. These findings indicate that the down-regulated spinal EM2 is an important contributor to the neuropathological process of bone cancer pain and enhancing activation of EM2/μ receptor signaling might provide a therapeutic alternative to optimizing the treatment of cancer-induced bone pain.

    Topics: Analgesics; Animals; Bone Neoplasms; Disease Models, Animal; Down-Regulation; Female; Hyperalgesia; Morphine; Naltrexone; Narcotic Antagonists; Oligopeptides; Posterior Horn Cells; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu; Tibia

2015
Opposite effects of neuropeptide FF on central antinociception induced by endomorphin-1 and endomorphin-2 in mice.
    PloS one, 2014, Volume: 9, Issue:8

    Neuropeptide FF (NPFF) is known to be an endogenous opioid-modulating peptide. Nevertheless, very few researches focused on the interaction between NPFF and endogenous opioid peptides. In the present study, we have investigated the effects of NPFF system on the supraspinal antinociceptive effects induced by the endogenous µ-opioid receptor agonists, endomorphin-1 (EM-1) and endomorphin-2 (EM-2). In the mouse tail-flick assay, intracerebroventricular injection of EM-1 induced antinociception via µ-opioid receptor while the antinociception of intracerebroventricular injected EM-2 was mediated by both µ- and κ-opioid receptors. In addition, central administration of NPFF significantly reduced EM-1-induced central antinociception, but enhanced EM-2-induced central antinociception. The results using the selective NPFF1 and NPFF2 receptor agonists indicated that the EM-1-modulating action of NPFF was mainly mediated by NPFF2 receptor, while NPFF potentiated EM-2-induecd antinociception via both NPFF1 and NPFF2 receptors. To further investigate the roles of µ- and κ-opioid systems in the opposite effects of NPFF on central antinociception of endomprphins, the µ- and κ-opioid receptors selective agonists DAMGO and U69593, respectively, were used. Our results showed that NPFF could reduce the central antinociception of DAMGO via NPFF2 receptor and enhance the central antinociception of U69593 via both NPFF1 and NPFF2 receptors. Taken together, our data demonstrate that NPFF exerts opposite effects on central antinociception of endomorphins and provide the first evidence that NPFF potentiate antinociception of EM-2, which might result from the interaction between NPFF and κ-opioid systems.

    Topics: Adamantane; Animals; Benzeneacetamides; Dipeptides; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Injections, Intraventricular; Male; Mice; Naltrexone; Nociception; Oligopeptides; Pyrrolidines

2014
Orexigenic effects of endomorphin-2 (EM-2) related to decreased CRH gene expression and increased dopamine and norepinephrine activity in the hypothalamus.
    Peptides, 2013, Volume: 48

    Endomorphin-1 (EM-1) and endomorphin-2 (EM-2) are opioid peptides which are selective partial agonists of μ-opioid receptor. We studied the effects of EM-2 injected into the arcuate nucleus (ARC) of the hypothalamus on feeding behavior and gene expression of orexigenic [agouti-related peptide (AgRP), neuropeptide Y (NPY) and orexin-A] and anorexigenic [cocaine and amphetamine-regulated transcript (CART), corticotrophin releasing hormone (CRH) and proopiomelanocortin (POMC)] peptides in male Wistar rats fed a standard laboratory diet. Furthermore, we evaluated the effects of EM-2 on dopamine (DA), norepinephrine (NE) and serotonin (5-hydroxytryptamine, 5-HT) steady state concentrations, in the hypothalamus. 64 rats (16 for each group of treatment) were injected into the ARC, at 9.00 am, with either vehicle or EM-2 (0.50-0.75 μmol/kg) or EM-2 (0.50 μmol/kg) plus β-funaltrexamine (0.20 μmol/kg). Food intake was recorded through 24h following injection, and hypothalamic DA, NE, 5-HT levels and neuropeptide gene expression were evaluated 24h after EM-2 administration. Compared to vehicle, EM-2 significantly increased food intake, throughout 24h post-injection. Furthermore, EM-2 treatment led to a significant increase of DA and NE concentrations and a decrease of CRH mRNA levels. On the other hand, β-funaltrexamine administration reverted both feeding stimulatory and neuromodulatory effects induced by EM-2. We can conclude that the orexigenic effect of μ-opioid receptor activation by EM-2 could be related to both inhibition of CRH and stimulation of dopamine and norepinephrine levels, in the hypothalamus.

    Topics: Agouti-Related Protein; Animals; Arcuate Nucleus of Hypothalamus; Corticotropin-Releasing Hormone; Dopamine; Feeding Behavior; Gene Expression Regulation; Humans; Hypothalamus; Intracellular Signaling Peptides and Proteins; Naltrexone; Nerve Tissue Proteins; Neuropeptide Y; Neuropeptides; Norepinephrine; Oligopeptides; Orexins; Pro-Opiomelanocortin; Rats; Serotonin

2013
Synthesis and biological evaluation of cyclic endomorphin-2 analogs.
    Peptides, 2010, Volume: 31, Issue:2

    In our previous paper we reported synthesis and biological activity of two cyclic analogs of endomorphin-2 (EM-2): Tyr-c(Lys-Phe-Phe-Asp)-NH(2) and Tyr-c(Asp-Phe-Phe-Lys)-NH(2), achieved by making an amid bond between Lys and Asp side-chains. The first analog did not bind to the mu-opioid receptor, the affinity of the second one was very low. In the present study, we describe the synthesis of four novel cyclic analogs of similar structure, but with d-amino acids in position 2 (D-Lys or D-Asp). All new analogs displayed high affinity for the mu-opioid receptor, were much more stable than EM-2 in rat brain homogenate and showed remarkable antinociceptive activity after intracerebroventricular (i.c.v.) administration. Analgesic effect of the most potent cyclic analog, Tyr-c(D-Lys-Phe-Phe-Asp)NH(2) was much stronger and longer lasting than that of EM-2. This analog elicited analgesia also after peripheral administration and this effect was reversed by concomitant i.c.v. injection of the mu-opioid antagonist, beta-funaltrexamine, which indicated that antinociception was mediated by the mu-opioid receptor in the brain. Central action of the cyclic analog gives evidence that it was able to cross the blood-brain barrier, most likely due to the increased lipophilicity. Our results demonstrate that cyclization might be a promising strategy to enhance bioavailability of peptides and may serve a role in the development of novel endomorphin analogs with increased therapeutic potential.

    Topics: Amino Acid Sequence; Analgesics, Opioid; Animals; Brain; Cell Membrane; Endorphins; Injections, Intravenous; Injections, Intraventricular; Male; Mice; Mice, Inbred Strains; Naltrexone; Narcotic Antagonists; Oligopeptides; Pain; Pain Measurement; Peptides, Cyclic; Rats; Rats, Wistar; Receptors, Opioid, delta; Receptors, Opioid, mu; Tissue Extracts

2010
The effects of endomorphins on striatal [3H]GABA release induced by electrical stimulation: an in vitro superfusion study in rats.
    Neurochemical research, 2009, Volume: 34, Issue:5

    The endomorphins (EM1 and EM2) are selective endogenous ligands for mu-opioid receptors (MOR1 and MOR2) with neurotransmitter and neuromodulator roles in mammals. In the present study we investigated the potential actions of EMs on striatal GABA release and the implication of different MORs in these processes. Rat striatal slices were preincubated with tritium-labelled GABA ([(3)H]GABA), pretreated with selective MOR1 and MOR2 antagonist beta-funaltrexamine and selective MOR1 antagonist naloxonazine and then superfused with the selective MOR agonists, EM1 and EM2. EM1 significantly decreased the striatal [(3)H]GABA release induced by electrical stimulation. Beta-funaltrexamine antagonized the inhibitory action of EM1, but naloxonazine did not affect it considerably. EM2 was ineffective, even in case of specific enzyme inhibitor diprotin A pretreatment. The results demonstrate that EM1 decreases GABA release in the basal ganglia through MOR2, while EM2 does not influence it.

    Topics: Animals; Corpus Striatum; Dipeptidyl-Peptidase IV Inhibitors; Electric Stimulation; gamma-Aminobutyric Acid; Male; Naloxone; Naltrexone; Oligopeptides; Perfusion; Rats; Rats, Wistar; Receptors, Opioid, mu; Tritium

2009
Possible involvement of dynorphin A release via mu1-opioid receptor on supraspinal antinociception of endomorphin-2.
    Peptides, 2008, Volume: 29, Issue:9

    It has been demonstrated that the antinociception induced by i.t. or i.c.v. administration of endomorphins is mediated through mu-opioid receptors. Moreover, though endomorphins do not have appreciable affinity for kappa-opioid receptors, pretreatment with the kappa-opioid receptor antagonist nor-binaltorphimine markedly blocks the antinociception induced by i.c.v.- or i.t.-injected endomorphin-2, but not endomorphin-1. These evidences propose the hypothesis that endomorphin-2 may initially stimulate the mu-opioid receptors, which subsequently induces the release of dynorphins acting on kappa-opioid receptors to produce antinociception. The present study was performed to determine whether the release of dynorphins by i.c.v.-administered endomorphin-2 is mediated through mu-opioid receptors for producing antinociception. Intracerebroventricular pretreatment with an antiserum against dynorphin A, but not dynorphin B or alpha-neo-endorphin, and s.c. pretreatment with kappa-opioid receptor antagonist nor-binaltorphimine dose-dependently attenuated the antinociception induced by i.c.v.-administered endomorphin-2, but not endomorphin-1 and DAMGO. The attenuation of endomorphin-2-induced antinociception by pretreatment with antiserum against dynorphin A or nor-binaltorphimine was dose-dependently eliminated by additional s.c. pretreatment with a selective mu-opioid receptor antagonist beta-funaltrexamine or a selective mu1-opioid receptor antagonist naloxonazine at ultra low doses, which are inactive against micro-opioid receptor agonists in antinociception, suggesting that endomorphin-2 stimulates distinct subclass of micro1-opioid receptor that induces the release of dynorphin A acting on kappa-opioid receptors in the brain. It concludes that the antinociception induced by supraspinally administered endomorphin-2 is in part mediated through the release of endogenous kappa-opioid peptide dynorphin A, which is caused by the stimulation of distinct subclass of micro1-opioid receptor.

    Topics: Analgesics; Animals; Dynorphins; Endorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Immune Sera; Injections, Intraventricular; Male; Mice; Naloxone; Naltrexone; Oligopeptides; Protein Precursors; Receptors, Opioid, kappa; Receptors, Opioid, mu

2008
The effects of endomorphins and diprotin A on striatal dopamine release induced by electrical stimulation-an in vitro superfusion study in rats.
    Neurochemistry international, 2006, Volume: 49, Issue:7

    The endomorphins (EM1: Tyr-Pro-Trp-Phe-NH2, and EM2: Tyr-Pro-Phe-Phe-NH2) are recently discovered endogenous ligands for mu-opioid receptors (MORs) with role of neurotransmitters or neuromodulators in mammals. Cessation of their physiological action may be effected through rapid enzymatic degradation by the dipeptidyl-peptidase IV (DPPIV) found in the brain synaptic membranes. An in vitro superfusion system was utilized to investigate the actions of EM1, EM2 and specific DPPIV inhibitor diprotin A on the striatal release of dopamine (DA) induced by electrical stimulation in rats. The involvement of the different MORs (MOR1 and MOR2) in this process was studied by pretreatment with MOR antagonists beta-funaltrexamine (a MOR1 and MOR2 antagonist) and naloxonazine (a MOR1 antagonist). EM1 significantly increased the tritium-labelled dopamine DA release induced by electrical stimulation. EM2 was effective only when the slices were pretreated with diprotin A. beta-Funaltrexamine antagonized the stimulatory effects of both EM1 and EM2. The administration of naloxonazine did not appreciably influence the action of EM1, but blocked the action of EM2, at least when the slices were pretreated with diprotin A. These data suggest that both EM1 and EM2 increase DA release from the striatum and, though diprotin A does not affect the action of EM1, it inhibits the enzymatic degradation of EM2. The DA-stimulating action induced by EM1 seems to be mediated by MOR2, while that evoked by EM2 appears to be transmitted by MOR1.

    Topics: Animals; Corpus Striatum; Dipeptidyl Peptidase 4; Dipeptidyl-Peptidase IV Inhibitors; Dopamine; Electric Stimulation; Infusion Pumps; Male; Naloxone; Naltrexone; Narcotic Antagonists; Neural Pathways; Oligopeptides; Organ Culture Techniques; Presynaptic Terminals; Radioligand Assay; Rats; Rats, Wistar; Substantia Nigra; Synaptic Transmission

2006
Differentiation of opioid receptor preference by [Dmt1]endomorphin-2-mediated antinociception in the mouse.
    European journal of pharmacology, 2005, Feb-10, Volume: 509, Issue:1

    The potent opioid [Dmt1]endomorphin-2 (Dmt-Pro-Phe-Phe-NH2) differentiated between the opioid receptor subtypes responsible for the antinociception elicited by endomorphin-2 in mice. Antinociception, induced by the intracerebroventricular administration of [Dmt1]endomorphin-2 and inhibited by various opioid receptor antagonists [naloxone, naltrindole, beta-funaltrexamine, naloxonazine], was determined by the tail-flick (spinal effect) and hot-plate (supraspinal effect) tests. The opioid receptor subtypes involved in [Dmt1]endomorphin-2-induced antinociception differed between these in vivo model paradigms: naloxone (non-specific opioid receptor antagonist) and beta-funaltrexamine (irreversible mu1/mu2-opioid receptor antagonist) blocked antinociception in both tests, although stronger inhibition occurred in the hot-plate than the tail-flick test suggesting involvement of other opioid receptors. Consequently, we applied naloxonazine (mu1-opioid receptor antagonist) that significantly blocked the effect in the hot-plate test and naltrindole (delta-opioid receptor antagonist), which was only effective in the tail-flick test. The data indicated that [Dmt1]endomorphin-2-induced spinal antinociception was primarily mediated by both mu2- and delta-opioid receptors, while a supraspinal mechanism involved only mu1/mu2-subtypes.

    Topics: Analgesia; Animals; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Hot Temperature; Injections, Intraventricular; Injections, Subcutaneous; Male; Mice; Naloxone; Naltrexone; Nociceptors; Oligopeptides; Pain; Pain Measurement; Receptors, Opioid, delta; Receptors, Opioid, mu; Tail; Time Factors

2005
Opposite conditioned place preference responses to endomorphin-1 and endomorphin-2 in the mouse.
    Neuroscience letters, 2004, Jul-29, Volume: 365, Issue:3

    An unbiased conditioned place preference paradigm was used to evaluate the reward effect of selective endogenous mu-opioid ligands, endomorphin-1 and endomorphin-2, in male CD-1 mice. Pre- and post-conditioning free-movement were measured on day 1 and day 5, respectively. Conditioning sessions were conducted twice daily from day 2 through day 4 consisting of the alternate injection of conditioning drug or vehicle. Intracerebroventricular (i.c.v.) injection of endomorphin-1 (0.3-10 microg) induced place preference in a dose-dependent manner; whereas, endomorphin-2 (1-10 microg) dose-dependently induced place aversion. Both endomorphin-1-induced place preference and endomorphin-2-induced place aversion were blocked by pretreatment i.c.v. with mu-opioid receptor antagonist, beta-funaltrexamine. Selective delta-opioid receptor antagonist, naltrindole, co-administered i.c.v. with endomorphin-1 or endomorphin-2 did not affect reward effect. However, endomorphin-2-induced place aversion, but not endomorphin-1-induced place preference, was blocked by the i.c.v.-administered selective kappa-opioid receptor antagonist, WIN 44,441-3. It is concluded that endomorphin-1 produces conditioned place preference, which is mediated by the stimulation of mu-, but not delta- or kappa-opioid receptors, while endomorphin-2 produces conditioned place aversion, which is mediated by the stimulation of mu- and kappa-, but not delta-opioid receptors.

    Topics: Animals; Azocines; Conditioning, Operant; Injections, Intraventricular; Ligands; Male; Mice; Naltrexone; Oligopeptides; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu

2004
The antitussive effects of endomorphin-1 and endomorphin-2 in mice.
    European journal of pharmacology, 2003, Apr-25, Volume: 467, Issue:1-3

    The antitussive effects of endomorphin-1 and endomorphin-2, endogenous mu-opioid receptor agonists, on capsaicin-induced coughs were examined in mice. Endomorphin-2, at doses of 3, 10 and 30 microg, i.c.v., dose-dependently inhibited the number of capsaicin-induced coughs. However, the same doses (3, 10 and 30 microg) of endomorphin-1 injected with i.c.v. had no significant effects on the number of capsaicin-induced coughs. The antitussive effect of endomorphin-2 was significantly reduced by beta-funaltrexamine, a mu(1)/mu(2)-opioid receptor antagonist, but not naloxonazine, a selective mu(1)-opioid receptor antagonist. Furthermore, the antitussive effect of endomorphin-2 was also partially but significantly reduced by nor-binaltorphimine, a selective kappa-opioid receptor antagonist. These results indicate that the administration of the endogenous mu-opioid ligand endomorphin-2, but not endomorphin-1, into the brain produces an antitussive effect via mainly naloxonazine-insensitive mu-opioid receptors, namely mu(2)-opioid receptors and partially kappa-opioid receptors.

    Topics: Animals; Antitussive Agents; Capsaicin; Cough; Dose-Response Relationship, Drug; Injections, Intraventricular; Male; Mice; Mice, Inbred ICR; Naloxone; Naltrexone; Oligopeptides; Receptors, Opioid, kappa; Receptors, Opioid, mu

2003
Effects of endomorphin on substantia gelatinosa neurons in rat spinal cord slices.
    British journal of pharmacology, 2003, Volume: 140, Issue:6

    1. Whole-cell patch recordings were made from substantia gelatinosa (SG) neurons in transverse lumbar spinal cord slices of 15- to 30-day-old rats. 2. Endomorphin 1 (EM-1) or EM-2 (

    Topics: Animals; Bicuculline; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Excitatory Postsynaptic Potentials; Female; Male; Membrane Potentials; Naloxone; Naltrexone; Narcotic Antagonists; Neurons; Oligopeptides; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu; Spinal Cord; Substantia Gelatinosa; Tetrodotoxin; Time Factors

2003
Endomorphins 1 and 2, endogenous mu-opioid receptor agonists, impair passive avoidance learning in mice.
    European journal of pharmacology, 2001, Jun-08, Volume: 421, Issue:2

    The effects of intracerebroventricular administration of endomorphin-1 and endomorphin-2, endogenous mu-opioid receptor agonists, on passive avoidance learning associated with long-term memory were investigated in mice. Endomorphin-1 (10 and 17.5 microg) and endomorphin-2 (17.5 microg) produced a significant decrease in step-down latency in a passive avoidance learning task. beta-Funaltrexamine (5 microg) almost completely reversed the endomorphin-1 (17.5 microg)- and endomorphin-2 (17.5 microg)-induced shortening of step-down latency, although neither naltrindole (4 ng) nor nor-binaltorphimine (4 microg) produced any significant effects on the effects of endomorphins 1 and 2. These results suggest that endomorphins 1 and 2 impair long-term memory through the mediation of mu-opioid receptors in the brain.

    Topics: Analgesics, Opioid; Animals; Avoidance Learning; Behavior, Animal; Dose-Response Relationship, Drug; Male; Mice; Naltrexone; Narcotic Antagonists; Oligopeptides; Receptors, Opioid, mu

2001
Lack of the involvement of mu1-opioid receptor subtype on motivational effects induced by the endogenous mu-opioid receptor ligands endomorphin-1 and -2 in the mouse.
    Neuroscience letters, 2001, Jul-27, Volume: 308, Issue:1

    The present study was designed to investigate the role of mu-opioid receptor subtypes in the motivational effect of endogenous mu-opioid receptor ligands, endomorphin-1 and -2. In C57BL/6J mice, endomorphin-1 produced a significant place preference, whereas endomorphin-2 exhibited a significant place aversion. These effects were abolished by a mu1/mu2-opioid receptor antagonist beta-funaltrexamine. Under these conditions, both endomorphin-1 and -2 produced their motivational effects in mu1-opioid receptor-deficient CXBK mice, indicating the mu2-opioid receptor involvement. Furthermore, in the lower midbrain including ventral tegmental area, both endomorphin-1 and -2 equally produced dose-related increases in guanosine-5'-o-(3-[35S] thio) triphosphate bindings in C57BL/6J and CXBK mice. These findings indicate that endomorphin-1 and -2 may produce distinct motivational effects via respective mu2-opioid receptor isoforms in the mouse. Furthermore, endomorphin-1 and -2 produced the mu1-resistant G-protein activation in the mouse lower midbtrain.

    Topics: Analgesics, Opioid; Animals; Binding Sites; Brain; Cell Membrane; Conditioning, Psychological; GTP-Binding Proteins; Guanosine 5'-O-(3-Thiotriphosphate); Male; Mice; Mice, Inbred C57BL; Motivation; Naltrexone; Narcotic Antagonists; Neurons; Oligopeptides; Radioligand Assay; Receptors, Opioid, mu; Subcellular Fractions; Sulfur Radioisotopes; Ventral Tegmental Area

2001
Effects of endomorphin-2 on arterial blood pressure and pain threshold in spontaneously hypertensive rats and modification of these effects by beta-funaltrexamine and nor-binaltorphimine.
    Life sciences, 2001, Jun-22, Volume: 69, Issue:5

    The effects of intracerebroventricular (icv) administration of endomorphin-2 (E2) on arterial blood pressure and pain threshold in spontaneously hypertensive rats (SHR) and modification of these effects by K [OP2] and mu [OP3] opioid receptors antagonists were investigated. Endomorphin-2 administrated icv in doses of 8, 16 and 32 mcg produced dose-dependent analgesic and hypotensive effect. In SHR decrease in blood pressure amounted 2.667, 4.0 and 6.534 kPa, respectively. Pain threshold increased by 1.7, 3.6 and 8.9 (g x 10). In Wistar Kyoto (WKY) strain, being the normotensive controls, E2 in doses of 8 and 16 mcg decrease in blood pressure was less pronounced and amounted 1.200 and 1.467 kPa, respectively, whereas the pain threshold increased by 7.2 and 10.4 (g x 10), respectively. Both E2 effects were antagonized by equimolar icv doses of beta-funaltrexamine (beta-FNA). Equimolar doses of nor-binaltorphimine (nor-BNI) attenuated analgesic action of E2, but were without hypotensive action produced by E2. A strong correlation between drop in blood pressure and increase in pain threshold observed in the SHR and WKY strains after icv administration of E2, indicate close interaction between systems responsible for pain perception and blood pressure control.

    Topics: Analgesics, Opioid; Analysis of Variance; Animals; Blood Pressure; Disease Models, Animal; Drug Interactions; Male; Naltrexone; Narcotic Antagonists; Oligopeptides; Pain; Pain Threshold; Rats; Rats, Inbred SHR; Rats, Inbred WKY

2001
Endomorphin-1 improves scopolamine-induced impairment of short-term memory via mu1-opioid receptor in mice.
    Neuroreport, 2001, Dec-04, Volume: 12, Issue:17

    The effects of intracerebroventricular injection of endomorphin-1 and 2, endogenous mu-opioid receptor agonists, on the scopolamine-induced impairment of spontaneous alternation performance associated with short-term memory were investigated in mice. Endomorphin-1 (0.03 microg) inhibited scopolamine (1 mg/kg)-induced impairment of spontaneous alternation performance without affecting total arm entries, while endomorphin-2 (0.01-10 microg) failed to significantly influence the scopolamine (1 mg/kg)-induced impairment. Endomorphin-1 (0.03 microg) itself had no marked effects on spontaneous alternation performance in intact mice. Although beta-funaltrexamine (5 microg), a mu-opioid receptor antagonist, did not significantly affect the inhibitory effects of endomorphin-1 (0.03 microg) on the scopolamine (1 mg/kg)-induced impairment, naloxonazine (35 mg/kg), a mu1-opioid receptor antagonist, significantly reversed the inhibitory effects of endomorphin-1 (0.03 microg) on the impairment. Naloxonazine (35 mg/kg) unlike beta-funaltrexamine (5 microg) did not significantly influence the scopolamine (1 mg/kg)-induced impairment of spontaneous alternation performance. These results suggest that endomorphin-1 improves the disturbance of short-term memory resulting from cholinergic dysfunction through the mediation of mu1-opioid receptors.

    Topics: Analgesics, Opioid; Animals; Brain; Dose-Response Relationship, Drug; Drug Interactions; Male; Maze Learning; Memory Disorders; Memory, Short-Term; Mice; Muscarinic Antagonists; Naloxone; Naltrexone; Narcotic Antagonists; Neurons; Oligopeptides; Receptors, Opioid, mu; Scopolamine

2001
The antinociceptive effects of endomorphin-1 and endomorphin-2 in diabetic mice.
    European journal of pharmacology, 2000, Mar-10, Volume: 391, Issue:1-2

    The antinociceptive effects of endomorphin-1 and endomorphin-2, endogenous mu-opioid receptor agonists, were examined using the tail-flick test in non-diabetic and diabetic mice. Endomorphin-1, at doses of 1 to 10 microg, i.c.v., and endomorphin-2, at doses of 3 to 30 microg, i.c.v., each dose dependently inhibited the tail-flick response in both non-diabetic and diabetic mice. There was no significant difference between the antinociceptive effects of endomorphin-1 in non-diabetic mice and diabetic mice. The antinociceptive effect of endomorphin-2 was greater in non-diabetic mice than in diabetic mice. In non-diabetic mice, the antinociceptive effects of endomorphin-1 and endomorphin-2 were significantly reduced by beta-funaltrexamine, a mu-opioid receptor antagonist, and naloxonazine, a selective mu(1)-opioid receptor antagonist, but not by naltrindole, a delta-opioid receptor antagonist, or nor-binaltorphimine, a kappa-opioid receptor antagonist. In diabetic mice, the antinociceptive effect of endomorphin-2 was significantly reduced by beta-funaltrexamine and naloxonazine. However, these micro-opioid receptor antagonists had no significant effect on the antinociceptive effect of endomorphin-1 in diabetic mice. The antinociception induced by endomorphin-1 in diabetic mice was significantly reduced by naltrindole and 7-benzylidenenaltrexon, a selective delta(1)-opioid receptor antagonist, administered i.c.v. However, nor-binaltorphimine had no significant effect on the antinociceptive effects of endomorphin-1 and endomorphin-2 in diabetic mice. These results indicate that the antinociceptive effects of endomorphin-1 and endomorphin-2 in non-diabetic mice are mediated through the activation of mu(1)-opioid receptors, whereas in diabetic mice, endomorphin-1 and endomorphin-2 may produce antinociception through different actions at delta(1)- and mu(1)-opioid receptors, respectively.

    Topics: Analgesics, Opioid; Animals; Diabetes Mellitus, Experimental; Injections, Intraventricular; Male; Mice; Mice, Inbred ICR; Naloxone; Naltrexone; Oligopeptides; Pain Measurement; Reaction Time; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu

2000
Identification of the opioid receptors involved in passive-avoidance learning in the day-old chick during the second wave of neuronal activity.
    Brain research, 2000, May-12, Volume: 864, Issue:2

    Long-term memory formation for passive-avoidance learning in the day-old chick is known to have two distinct time windows of protein synthesis (F.M. Freeman, S.P.R. Rose, A.B. Scholey, 1995. Two time windows of anisomycin-induced amnesia for passive-avoidance training in the day-old chick. Neurobiol. Learn. Mem. 63, 291-295). The lobus parolfactorius (LPO) is thought to be an important site for the second wave of protein synthesis which occurs 4-5 h after training. Birds received bilateral intracranial injections of agonists and antagonists for the mu-, delta-, kappa-opioid receptors and the opioid receptor-like (ORL(1)) receptor directly into the LPO at 5 h post-training and were tested for recall 24 h later. Also, 100 microM beta-funaltrexamine (beta-FAN), a mu-opioid receptor antagonist, significantly impaired memory formation (P<0.01). The delta-opioid receptor was also involved in memory formation at this time-point since antagonism of this receptor by 1 mM ICI-174,864 caused amnesia (P<0.01) which was reversed by the agonist, DPLPE. The kappa-opioid receptor appeared not to be involved during the second phase of neuronal activity since neither stimulation by dynorphin nor inhibition by nor-BIN caused amnesia for the task. The ORL(1) receptor agonist orphanin FQ also had no effect suggesting that this receptor was not involved at this 5-h time-point. Cytosolic and mitochondrial protein synthesis has been shown to be important in passive-avoidance learning in the day-old chick. Both chloramphenicol (CAP) and anisomycin (ANI), inhibitors of mitochondrial and cytosolic protein synthesis, respectively, caused disruption when injected 5 h post-training into the LPO (P<0.05). Endomorphin-2 (Endo-2), a mu-opioid receptor agonist, reversed both the ANI- and CAP-sensitivity. However, DPLPE, a delta-opioid receptor agonist, only reversed the effect due to CAP. Possible mechanisms for these effects are discussed.

    Topics: Age Factors; Amnesia; Analgesics, Opioid; Animals; Anisomycin; Avoidance Learning; Brain Chemistry; Chickens; Chloramphenicol; Conditioning, Psychological; Dynorphins; Enkephalin, D-Penicillamine (2,5)-; Enkephalin, Leucine; Female; Male; Memory; Naltrexone; Narcotic Antagonists; Neurons; Nociceptin; Oligopeptides; Opioid Peptides; Protein Synthesis Inhibitors; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Vasodilator Agents

2000
Effects of endomorphins-1 and -2, endogenous mu-opioid receptor agonists, on spontaneous alternation performance in mice.
    European journal of pharmacology, 2000, May-03, Volume: 395, Issue:3

    The effects of intracerebroventricular (i.c.v.) administration of endomorphins-1 and -2, endogenous mu-opioid receptor agonists, on the spontaneous alternation performance associated with spatial working memory were investigated in mice. Endomorphin-1 (10 and 17.5 microg) and endomorphin-2 (10 microg) produced a significant decrease in percent alternation without affecting total arm entries. beta-Funaltrexamine (5 microg) almost completely reversed the endomorphin-1 (10 microg)- and endomorphin-2 (10 microg)-induced decrease in percent alternation, although neither naltrindole (4 ng) nor nor-binaltorphimine (4 microg) produced any significant effects on alternation performance. These results suggest that endomorphins impair spatial working memory through the mediation of mu-opioid receptors.

    Topics: Analgesics, Opioid; Animals; Injections, Intraventricular; Male; Mice; Naltrexone; Narcotic Antagonists; Oligopeptides; Psychomotor Performance; Receptors, Opioid, mu

2000
Endomorphin-like immunoreactivity in the rat dorsal horn and inhibition of substantia gelatinosa neurons in vitro.
    Neuroscience, 1999, Volume: 89, Issue:2

    Endomorphin 1 and 2 are two tetrapeptides recently isolated from bovine as well as human brains and proposed to be the endogenous ligand for the mu-opiate receptor. Opioid compounds expressing mu-receptor preference are generally potent analgesics. The spinal cord dorsal horn is considered to be an important site for the processing of sensory information including pain. The discovery that endomorphins produced greater analgesia in mice upon intrathecal as compared to intracerebroventricular injections raises the possibility that dorsal horn neurons may represent the anatomic site upon which endomorphins exert their analgesic effects. We report here the detection of endomorphin 2-immunuoreactive fiber-like elements in superficial layers of the rat dorsal horn by immunohistochemical techniques. Whole-cell patch recordings from substantia gelatinosa neurons of cervical spinal cord slices revealed two conspicuous effects of exogenously applied endomorphin 1 and 2: (i) depression of excitatory postsynaptic potentials evoked by stimulation of dorsal root entry zone, and (ii) hyperpolarization of substantia gelatinosa neurons. These effects were reversed by the selective mu-opiate receptor antagonist beta-funaltrexamine. Collectively, the detection of endomorphin-like immunoreactivity in nerve fibers of the superficial layers and the inhibitory action of endomorphins on substantia gelatinosa neurons provide further support for a potential role of these two peptides in spinal nociception.

    Topics: Animals; Electrophysiology; Excitatory Postsynaptic Potentials; Female; Immunohistochemistry; In Vitro Techniques; Male; Naltrexone; Narcotic Antagonists; Neural Inhibition; Neurons; Oligopeptides; Rats; Rats, Sprague-Dawley; Spinal Cord; Substantia Gelatinosa

1999
Differential involvement of mu-opioid receptor subtypes in endomorphin-1- and -2-induced antinociception.
    European journal of pharmacology, 1999, May-07, Volume: 372, Issue:1

    We investigated the role of mu-opioid receptor subtypes in both endomorphin-1 and endomorphin-2 induced antinociception in mice using supraspinally mediated behavior. With tail pressure as a mechanical noxious stimulus, both intracerebroventricularly (i.c.v.) and intrathecally (i.t.) injected-endomorphins produced potent and significant antinociceptive activity. Antinociception induced by i.t. and i.c.v. injection of endomorphin-1 was not reversed by pretreatment with a selective mu1-opioid receptor antagonist, naloxonazine (35 mg/kg, s.c.). By contrast, antinociception induced by i.t. and i.c.v. endomorphin-2 was significantly decreased by mu1-opioid receptor antagonist. Antinociception of both i.t. and i.c.v. endomorphin-1 and -2 was completely reversed by pretreatment with beta-funaltrexamine (40 mg/kg, s.c.). The results indicate that endomorphins may produce antinociception through the distinct mu1 and mu2 subtypes of mu-opioid receptor.

    Topics: Analgesics, Opioid; Animals; Dose-Response Relationship, Drug; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalins; Injections, Intraventricular; Injections, Spinal; Male; Mice; Naloxone; Naltrexone; Narcotic Antagonists; Nociceptors; Oligopeptides; Pain; Receptors, Opioid, mu; Time Factors

1999
Endomorphin-1 and endomorphin-2, endogenous ligands for the mu-opioid receptor, inhibit electrical activity of rat rostral ventrolateral medulla neurons in vitro.
    Neuroscience, 1999, Volume: 93, Issue:2

    The classic opioid peptide, enkephalin, and the novel member of the opioid family, nociceptin/orphanin FQ, inhibit the spontaneous electrical activity of neurons recorded from the rostral ventrolateral medulla, presumably cardiovascular neurons. In this study, the putative effects of endomorphin-1 and endomorphin-2, the newly discovered endogenous ligands for the micro-opioid receptor, on the electrical activity of rostral ventrolateral medulla neurons were investigated in rat brain slices in vitro. Like enkephalin and nociceptin, perfusion of endomorphin-1 or endomorphin-2 profoundly inhibited spontaneous discharges of 43% and 38% of the medullary neurons, respectively. No excitatory response to perfusion of either endomorphin was found in all neurons surveyed. Both endomorphins produced concentration-dependent inhibition. However, endomorphin-1 was more potent than endomorphin-2 for production of the inhibition, as demonstrated by the greater and longer suppression induced by endomorphin-1 than that induced by endomorphin-2 at the same concentration. Among the four opioid agonists tested, EC50 values (in nM) were 3.17 (endomorphin-1), 3.02 (nociceptin), 10.1 (endomorphin-2) and 150.0 (enkephalin). The non-selective opioid receptor antagonist, naloxone, blocked the inhibitory responses of the neurons to endomorphin-1, endomorphin-2 and enkephalin, but not to nociceptin. The selective mu antagonist, beta-funaltrexamine, prevented the neuronal inhibition induced by endomorphins, but not by enkephalin and nociceptin. Neither naloxone nor beta-funaltrexamine alone had a significant effect on the firing rate of the neurons. These results demonstrate that endomorphin-1 and, to a lesser extent, endomorphin-2 exert an inhibitory modulation of the electrical activity of rostral ventrolateral medulla neurons, which is mediated through the stimulation of mu-opioid receptors.

    Topics: Animals; Electrophysiology; Enkephalin, Methionine; In Vitro Techniques; Ligands; Male; Medulla Oblongata; Naloxone; Naltrexone; Narcotic Antagonists; Neurons; Nociceptin; Oligopeptides; Opioid Peptides; Perfusion; Rats; Rats, Sprague-Dawley; Receptors, Opioid, mu

1999