endomorphin-2 has been researched along with 2-2--azobis(2-amidinopropane)* in 2 studies
2 other study(ies) available for endomorphin-2 and 2-2--azobis(2-amidinopropane)
Article | Year |
---|---|
Protective effects of endomorphins, endogenous opioid peptides in the brain, on human low density lipoprotein oxidation.
Neurodegenerative disorders are associated with oxidative stress. Low density lipoprotein (LDL) exists in the brain and is especially sensitive to oxidative damage. Oxidative modification of LDL has been implicated in the pathogenesis of neurodegenerative diseases. Therefore, protecting LDL from oxidation may be essential in the brain. The antioxidative effects of endomorphin 1 (EM1) and endomorphin 2 (EM2), endogenous opioid peptides in the brain, on LDL oxidation has been investigated in vitro. The peroxidation was initiated by either copper ions or a water-soluble initiator 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH). Oxidation of the LDL lipid moiety was monitored by measuring conjugated dienes, thiobarbituric acid reactive substances, and the relative electrophoretic mobility. Low density lipoprotein oxidative modifications were assessed by evaluating apoB carbonylation and fragmentation. Endomorphins markedly and in a concentration-dependent manner inhibited Cu2+ and AAPH induced the oxidation of LDL, due to the free radical scavenging effects of endomorphins. In all assay systems, EM1 was more potent than EM2 and l-glutathione, a major intracellular water-soluble antioxidant. We propose that endomorphins provide protection against free radical-induced neurodegenerative disorders. Topics: Amidines; Antioxidants; Apolipoproteins A; Brain; Copper; Glutathione; Humans; Lipid Peroxidation; Lipoproteins, LDL; Oligopeptides; Opioid Peptides; Oxidation-Reduction; Thiobarbituric Acid Reactive Substances | 2006 |
Endomorphins, endogenous opioid peptides, provide antioxidant defense in the brain against free radical-induced damage.
Oxidative stress has been considered to be a major cause of cellular injuries in a variety of chronic health problems, such as carcinogenesis and neurodegenerative disorders. The brain appears to be more susceptible to oxidative damage than other organs. Therefore, the existence of antioxidants may be essential in brain protective systems. The antioxidative and free radical scavenging effects of endomorphin 1 (EM1) and endomorphin 2 (EM2), endogenous opioid peptides in the brain, have been investigated in vitro. The oxidative damage was initiated by a water-soluble initiator 2,2'-azobis(2-amidinopropane hydrocholoride) (AAPH) and hydrogen peroxide (H2O2). The linoleic acid peroxidation, DNA and protein damage were monitored by formation of hydroperoxides, by plasmid pBR 322 DNA nicking assay and single-cell alkaline electrophoresis, and by SDS-polyacrylamide gel electrophoresis. Endomorphins can inhibit lipid peroxidation, DNA strand breakage, and protein fragmentation induced by free radical. Endomorphins also reacted with galvinoxyl radicals in homogeneous solution, and the pseudo-first-order rate constants were determined spectrophotometrically by following the disappearance of galvinoxyl radicals. In all assay systems, EM1 was more potent than EM2 and GSH, a major intracellular water-soluble antioxidant. We propose that endomorphins are one of the protective systems against free radical-induced damage in the brain. Topics: Amidines; Antioxidants; Brain; Comet Assay; DNA Damage; Free Radicals; Humans; Kinetics; Leukocytes, Mononuclear; Lipid Peroxidation; Micelles; Mutagens; Oligopeptides | 2003 |