enalapril and 3-nitrotyrosine

enalapril has been researched along with 3-nitrotyrosine* in 4 studies

Other Studies

4 other study(ies) available for enalapril and 3-nitrotyrosine

ArticleYear
Attenuation of vascular/neural dysfunction in Zucker rats treated with enalapril or rosuvastatin.
    Obesity (Silver Spring, Md.), 2008, Volume: 16, Issue:1

    Obese Zucker rats, animal model for the metabolic syndrome, develop a diabetes-like neuropathy that is independent of hyperglycemia. The purpose of this study was to determine whether drugs used to treat cardiovascular dysfunction in metabolic syndrome also protect nerve function.. Obese Zucker rats at 20 weeks of age were treated for 12 weeks with enalapril or rosuvastatin. Lean rats were used as controls. Vasodilation in epineurial arterioles was measured by videomicroscopy. Endoneurial blood flow (EBF) was measured by hydrogen clearance and nerve conduction velocity was measured following electrical stimulation of motor or sensory nerves.. Enalapril treatment decreased serum angiotensin-converting enzyme (ACE) activity and both drugs reduced serum cholesterol levels. In obese Zucker rats at 32 weeks of age superoxide levels were elevated in the aortas and epineurial arterioles, which were reduced by treatment with either drug. Nitrotyrosine levels were increased in epineurial arterioles and reduced with enalapril treatment. EBF was decreased and corrected by treatment with either drug. Motor nerve conduction velocity was decreased and significantly improved with enalapril treatment. Obese Zucker rats were hypoalgesic in response to a thermal stimulus and this was significantly improved with either treatment. Treatment with either enalapril or rosuvastatin significantly reversed the decrease in acetylcholine-mediated vascular relaxation of epineurial arterioles in obese Zucker rats.. Even though obese Zucker rats have normal glycemia vascular and neural dysfunctions develop with age and can be improved by treatment with either enalapril or rosuvastatin.

    Topics: Acetylcholine; Angiotensin-Converting Enzyme Inhibitors; Animals; Arterioles; Cardiovascular System; Disease Models, Animal; Enalapril; Fluorobenzenes; Hydroxymethylglutaryl-CoA Reductase Inhibitors; Male; Metabolic Syndrome; Motor Neurons; Neural Conduction; Neurons, Afferent; Nociceptors; Obesity; Peripheral Nerves; Pyrimidines; Rats; Rats, Zucker; Rosuvastatin Calcium; Sciatic Nerve; Sulfonamides; Superoxides; Tyrosine; Vasodilator Agents

2008
Effects of angiotensin converting enzyme inhibitor and angiotensin II receptor antagonist combination on nitric oxide bioavailability and atherosclerotic change in Watanabe heritable hyperlipidemic rabbits.
    Hypertension research : official journal of the Japanese Society of Hypertension, 2008, Volume: 31, Issue:3

    We investigated the effects of co-administration of an angiotensin-converting enzyme inhibitor (ACEI) and angiotensin type 1 receptor blocker (ARB) on nitric oxide (NO) bioavailability in genetically hyperlipidemic rabbits with our newly developed NO sensor. Plasma NO was measured using the new NO sensor in the abdominal aorta of anesthetized Watanabe heritable hyperlipidemic (WHHL) rabbits. Acetylcholine (ACh)-stimulated (20 microg in 5 min into the aortic arch) NO production was recorded after an 8 week per os pretreatment with 1) vehicle (control), 2) the ACEI enalapril (E: 3 mg/kg/day), 3) the ARB losartan (L: 30 mg/kg/day) and 4) enalapril (1.5 mg/kg/day)+losartan (15 mg/kg/day) (E+L). Intra-aortic infusion of ACh produced an increase in plasma NO concentration, which was significantly greater with all the drug treatments than with the control. E increased ACh-induced NO significantly more than L (by 6.9 nmol/L, and 4.7 nmol/L, respectively). E+L increased ACh-induced NO by 9.5 nmol/L, significantly more than either E or L. Plasma peroxynitrite concentration was 1.2 pmol/mg protein in the control group and significantly less than in the E- and L-group. The lowest peroxynitrite concentration was observed in the E+L group (0.5 pmol/mg protein), which was significantly lower than in the E-group and the L-group. Optical coherence tomography and histology of the thoracic aorta revealed that the plaque area decreased significantly more with the combination than with the monotherapy (p<0.01). In conclusion, the combined treatment with an ACEI and an ARB may have additive protective effects on endothelial function as well as atherosclerotic change.

    Topics: Acetylcholine; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Animals; Aorta, Abdominal; Atherosclerosis; Blood Pressure; Disease Models, Animal; Dose-Response Relationship, Drug; Enalapril; Heart Rate; Hyperlipidemias; Losartan; Male; Nitric Oxide; Peroxynitrous Acid; Rabbits; Tyrosine; Vasodilator Agents

2008
Effects of angiotensin-converting-enzyme inhibitors in combination with diuretics on blood pressure and renal injury in nitric oxide-deficiency-induced hypertension in rats.
    Clinical science (London, England : 1979), 2006, Volume: 110, Issue:2

    The present study investigates the effects of chronic administration of ACEIs (angiotensin-converting-enzyme inhibitors; either zofenopril or enalapril) in combination with a diruetic (hydrochlorothiazide) on BP (blood pressure) increase and renal injury induced by L-NAME (NG-nitro-L-arginine methyl ester), an inhibitor of NO (nitric oxide) synthesis. Rats were untreated or received L-NAME alone, L-NAME+zofenopril+hydrochlorothiazide or L-NAME+enalapril+hydrochlorothiazide for 8 weeks. L-NAME treatment resulted in marked elevation in BP and mortality. Treatment with either ACEI and diuretic prevented the increase in BP induced by L-NAME, reduced the death rate and improved excretory parameters. Renal injury in the L-NAME group was severe, but, in the groups treated with either ACEI and diuretic, glomerular and tubulointerstitial lesions were not observed and the intensity, number and size of vessels affected was reduced. However, the efficacy of zofenopril+diuretic was superior to that of enalapril+diuretic in reducing vascular alterations. Oxidative stress indices and the expression of NO synthase and nitrotyrosine were normalized by the treatments. In conclusion, the combined treatment of zofenopril or enalapril with hydrochlorothiazide completely prevented the development of arterial hypertension induced by L-NAME. Renal morphological and functional alterations in the hypertensive animals were also almost completely normalized, but the treatment with zofenopril+diuretic produced a more complete organ protection. The protective effect is related to an activation of endothelial NO synthase expression and to a normalization of the oxidative stress parameters due to the inhibition of angiotensin II.

    Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Blood Pressure; Captopril; Diuretics; Drug Therapy, Combination; Enalapril; Hydrochlorothiazide; Hypertension; Kidney; Male; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Oxidative Stress; Rats; Rats, Sprague-Dawley; Tyrosine

2006
Impact of angiotensin-converting enzyme inhibition on renal cortical nitrotyrosine content during increased extracellular glucose concentration.
    Clinical biochemistry, 2006, Volume: 39, Issue:6

    Experiments evaluated the hypothesis that angiotensin-converting enzyme (ACE) inhibition suppresses hyperglycemia-induced nitrotyrosine (NT) production in the renal cortex.. Rats were untreated (UNTR, n = 6) or received the ACE inhibitor enalapril (20 mg/kg/day; ENAL, n = 6) for 2 weeks. Renal cortical slices were incubated for 90 min in media containing 5 (normal) or 20 mmol/L (high) glucose. Superoxide anion (O2*-) and nitrate + nitrite (NO(X)) levels were measured in the media. Superoxide dismutase (SOD) activity and NT content were measured in the tissue homogenate.. In the UNTR group, high glucose increased O2*- and NO(X) production by the renal cortex (P < 0.05 vs. normal glucose). Likewise, NT content and SOD activity of the renal cortex augmented (P < 0.05 vs. normal glucose). In the ENAL group, O2*- production and NT content were glucose-insensitive, but high glucose exerted an exaggerated impact on NO(X) production and SOD activity (P < 0.01 vs. UNTR in high glucose).. Accelerated NT content in the renal cortex during high-glucose conditions was prevented by ACE inhibitor treatment. It was suggested that, apart from its anti-hypertensive effect, the mechanism of suppressed NT degradation in the renal cortex by the ACE inhibitor enhances both O2*- degradation per se and antioxidative effects including SOD activation.

    Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Enalapril; Glucose; Kidney Cortex; Male; Nitrates; Nitric Oxide; Rats; Rats, Sprague-Dawley; Superoxide Dismutase; Superoxides; Tyrosine

2006