emodin has been researched along with luteolin in 13 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 2 (15.38) | 18.2507 |
2000's | 1 (7.69) | 29.6817 |
2010's | 7 (53.85) | 24.3611 |
2020's | 3 (23.08) | 2.80 |
Authors | Studies |
---|---|
Chang, CJ; Geahlen, RL | 1 |
Abou-Shoer, M; Chang, CJ; Geahlen, RL; Koonchanok, NM; Li, XH; Ma, GE | 1 |
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Arioka, S; Hinou, H; Nishimura, S; Sakagami, M; Takemoto, H; Togame, H; Uematsu, R; Yamaguchi, H | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
Alunda, JM; Baptista, C; Behrens, B; Bifeld, E; Borsari, C; Clos, J; Cordeiro-da-Silva, A; Corral, MJ; Costantino, L; Costi, MP; Dello Iacono, L; Di Pisa, F; Eick, J; Ellinger, B; Ferrari, S; Gribbon, P; Gul, S; Henrich, S; Jiménez-Antón, MD; Keminer, O; Kohler, M; Kuzikov, M; Landi, G; Luciani, R; Mangani, S; Pellati, F; Poehner, I; Pozzi, C; Reinshagen, J; Santarem, N; Tait, A; Tejera Nevado, P; Torrado, J; Trande, M; Wade, RC; Witt, G; Wolf, M | 1 |
Dutour, R; Poirier, D | 1 |
Golonko, A; Lazny, R; Lewandowski, W; Pienkowski, T; Roszko, M; Swislocka, R | 1 |
Bernatchez, JA; Li, J; Li, R; Luan, Y; Siqueira-Neto, JL; Tran, LT | 1 |
Easwaran, M; Manickam, M; Pillaiyar, T; Wendt, LL | 1 |
Tai, ZF; Wang, F; Zhang, GL | 1 |
Cho, JH; Cho, KK; Kang, SN; Kim, IS; Lee, JS; Lee, OH; Park, JH | 1 |
He, L; He, W; Li, N; Liao, Y; Mai, B; Mai, X; Mao, P; Zhang, Q; Zheng, L | 1 |
5 review(s) available for emodin and luteolin
Article | Year |
---|---|
Protein-tyrosine kinase inhibition: mechanism-based discovery of antitumor agents.
Topics: Animals; Antineoplastic Agents; Drug Screening Assays, Antitumor; Humans; Protein-Tyrosine Kinases | 1992 |
Inhibitors of cytochrome P450 (CYP) 1B1.
Topics: Cytochrome P-450 CYP1B1; Cytochrome P-450 Enzyme Inhibitors; Dose-Response Relationship, Drug; Humans; Molecular Structure; Structure-Activity Relationship | 2017 |
Another look at phenolic compounds in cancer therapy the effect of polyphenols on ubiquitin-proteasome system.
Topics: Animals; Diet; Humans; Neoplasms; Phenols; Polyphenols; Proteasome Endopeptidase Complex; Ubiquitin | 2019 |
Drugs for the Treatment of Zika Virus Infection.
Topics: Animals; Antiviral Agents; Drug Development; Drug Discovery; Humans; Viral Vaccines; Zika Virus; Zika Virus Infection | 2020 |
The recent outbreaks of human coronaviruses: A medicinal chemistry perspective.
Topics: Antiviral Agents; Chemistry, Pharmaceutical; COVID-19; Disease Outbreaks; Drug Repositioning; Humans; Virus Internalization | 2021 |
8 other study(ies) available for emodin and luteolin
Article | Year |
---|---|
Flavonoids from Koelreuteria henryi and other sources as protein-tyrosine kinase inhibitors.
Topics: Animals; Cattle; Flavonoids; Kaempferols; Magnetic Resonance Spectroscopy; Plant Extracts; Plants; Protein-Tyrosine Kinases; Quercetin | 1993 |
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Potent inhibitor scaffold against Trypanosoma cruzi trans-sialidase.
Topics: Base Sequence; DNA Primers; Drug Evaluation, Preclinical; Enzyme Inhibitors; Glycoproteins; Neuraminidase; Recombinant Proteins; Structure-Activity Relationship; Trypanosoma cruzi | 2010 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |
Profiling of Flavonol Derivatives for the Development of Antitrypanosomatidic Drugs.
Topics: Animals; Biological Products; Cell Line; Dose-Response Relationship, Drug; Flavonols; Humans; Macrophages; Mice; Mice, Inbred BALB C; Models, Molecular; Molecular Structure; Parasitic Sensitivity Tests; Structure-Activity Relationship; Trypanocidal Agents; Trypanosoma brucei brucei | 2016 |
Identification of small molecule activators of the janus kinase/signal transducer and activator of transcription pathway using a cell-based screen.
Topics: Antiviral Agents; Apigenin; Drug Evaluation, Preclinical; Emodin; Flavonoids; Gene Expression; Genes, Reporter; Hep G2 Cells; Humans; Interferon Type I; Janus Kinases; Luteolin; Plant Extracts; Quercetin; Response Elements; Signal Transduction; STAT Transcription Factors; Virus Diseases | 2012 |
In vitro anti-osteoporosis properties of diverse Korean Drynariae rhizoma phenolic extracts.
Topics: Animals; Antioxidants; Catechin; Cell Proliferation; Cells, Cultured; Chlorogenic Acid; Chromatography, High Pressure Liquid; Coumaric Acids; Emodin; Hydroxybenzoates; Luteolin; Mice; Osteoporosis; Phloroglucinol; Plant Extracts; Plants, Medicinal; Polypodiaceae; Quercetin; Republic of Korea | 2014 |
Antipyretic Mechanism Exploration of HuanglianShangqing Pill Based on Metabolomics and Network Pharmacology.
Topics: 3-Hydroxybutyric Acid; Acetaminophen; Animals; Antipyretics; Apigenin; Berberine; Citrates; Drugs, Chinese Herbal; Emodin; Ibuprofen; Interleukin-6; Kaempferols; Luteolin; Metabolomics; Network Pharmacology; Rats; Succinates | 2022 |