Page last updated: 2024-08-21

emetine and sulfamethoxazole

emetine has been researched along with sulfamethoxazole in 7 studies

Research

Studies (7)

TimeframeStudies, this research(%)All Research%
pre-19902 (28.57)18.7374
1990's0 (0.00)18.2507
2000's2 (28.57)29.6817
2010's3 (42.86)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
González-Díaz, H; Orallo, F; Quezada, E; Santana, L; Uriarte, E; Viña, D; Yáñez, M1
Choi, SS; Contrera, JF; Hastings, KL; Kruhlak, NL; Sancilio, LF; Weaver, JL; Willard, JM1
Glen, RC; Lowe, R; Mitchell, JB1
Afshari, CA; Eschenberg, M; Hamadeh, HK; Lee, PH; Lightfoot-Dunn, R; Morgan, RE; Qualls, CW; Ramachandran, B; Trauner, M; van Staden, CJ1
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ1
Wolfe, MS1
Hosseini, J; Swan, JC; Zierdt, CH1

Reviews

1 review(s) available for emetine and sulfamethoxazole

ArticleYear
The treatment of intestinal protozoan infections.
    The Medical clinics of North America, 1982, Volume: 66, Issue:3

    Topics: Amebicides; Antimalarials; Antiprotozoal Agents; Balantidiasis; Chloroquine; Coccidiosis; Dientamoebiasis; Drug Combinations; Dysentery, Amebic; Emetine; Furans; Furazolidone; Giardiasis; Humans; Intestinal Diseases, Parasitic; Iodoquinol; Liver Abscess, Amebic; Metronidazole; Paromomycin; Quinacrine; Sulfamethoxazole; Tetracycline; Tinidazole; Trimethoprim; Trimethoprim, Sulfamethoxazole Drug Combination

1982

Other Studies

6 other study(ies) available for emetine and sulfamethoxazole

ArticleYear
Quantitative structure-activity relationship and complex network approach to monoamine oxidase A and B inhibitors.
    Journal of medicinal chemistry, 2008, Nov-13, Volume: 51, Issue:21

    Topics: Computational Biology; Drug Design; Humans; Isoenzymes; Molecular Structure; Monoamine Oxidase; Monoamine Oxidase Inhibitors; Quantitative Structure-Activity Relationship

2008
Development of a phospholipidosis database and predictive quantitative structure-activity relationship (QSAR) models.
    Toxicology mechanisms and methods, 2008, Volume: 18, Issue:2-3

    Topics:

2008
Predicting phospholipidosis using machine learning.
    Molecular pharmaceutics, 2010, Oct-04, Volume: 7, Issue:5

    Topics: Animals; Artificial Intelligence; Databases, Factual; Drug Discovery; Humans; Lipidoses; Models, Biological; Phospholipids; Support Vector Machine

2010
Interference with bile salt export pump function is a susceptibility factor for human liver injury in drug development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2010, Volume: 118, Issue:2

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Assay; Biological Transport; Cell Line; Cell Membrane; Chemical and Drug Induced Liver Injury; Cytoplasmic Vesicles; Drug Evaluation, Preclinical; Humans; Liver; Rats; Reproducibility of Results; Spodoptera; Transfection; Xenobiotics

2010
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 136, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests

2013
In vitro response of Blastocystis hominis to antiprotozoal drugs.
    The Journal of protozoology, 1983, Volume: 30, Issue:2

    Topics: Animals; Antiprotozoal Agents; Emetine; Eukaryota; Furans; Furazolidone; Metronidazole; Paromomycin; Pentamidine; Quinolines; Sulfamethoxazole; Trimethoprim

1983