elastin has been researched along with goralatide* in 1 studies
1 other study(ies) available for elastin and goralatide
Article | Year |
---|---|
Prevention of aortic fibrosis by N-acetyl-seryl-aspartyl-lysyl-proline in angiotensin II-induced hypertension.
Fibrosis is an important component of large conduit artery disease in hypertension. The endogenous tetrapeptide N-acetyl-seryl-aspartyl-lysyl-proline (Ac-SDKP) has anti-inflammatory and antifibrotic effects in the heart and kidney. However, it is not known whether Ac-SDKP has an anti-inflammatory and antifibrotic effect on conduit arteries such as the aorta. We hypothesize that in ANG II-induced hypertension Ac-SDKP prevents aortic fibrosis and that this effect is associated with decreased protein kinase C (PKC) activation, leading to reduced oxidative stress and inflammation and a decrease in the profibrotic cytokine transforming growth factor-beta1 (TGF-beta1) and phosphorylation of its second messenger Smad2. To test this hypothesis we used rats with ANG II-induced hypertension and treated them with either vehicle or Ac-SDKP. In this hypertensive model we found an increased collagen deposition and collagen type I and III mRNA expression in the aorta. These changes were associated with increased PKC activation, oxidative stress, intercellular adhesion molecule (ICAM)-1 mRNA expression, and macrophage infiltration. TGF-beta1 expression and Smad2 phosphorylation also increased. Ac-SDKP prevented these effects without decreasing blood pressure or aortic hypertrophy. Ac-SDKP also enhanced expression of inhibitory Smad7. These data indicate that in ANG II-induced hypertension Ac-SDKP has an aortic antifibrotic effect. This effect may be due in part to inhibition of PKC activation, which in turn could reduce oxidative stress, ICAM-1 expression, and macrophage infiltration. Part of the effect of Ac-SDKP could also be due to reduced expression of the profibrotic cytokine TGF-beta1 and inhibition of Smad2 phosphorylation. Topics: Angiotensin II; Animals; Aorta; Collagen; Elastin; Enzyme Activation; Fibrosis; Heart Diseases; Hypertension; Immunohistochemistry; Intercellular Adhesion Molecule-1; Lipid Metabolism; Male; Neutrophil Infiltration; Oligopeptides; Oxidation-Reduction; Phosphorylation; Protein Kinase C; Rats; Rats, Sprague-Dawley; Smad2 Protein; Transforming Growth Factor beta1; Vasoconstrictor Agents | 2008 |