elastin and arginyl-glycyl-aspartyl-serine

elastin has been researched along with arginyl-glycyl-aspartyl-serine* in 2 studies

Other Studies

2 other study(ies) available for elastin and arginyl-glycyl-aspartyl-serine

ArticleYear
Engineering membrane scaffolds with both physical and biomolecular signaling.
    Acta biomaterialia, 2012, Volume: 8, Issue:3

    We report on the combination of a top-down and bottom-up approach to develop thin bioactive membrane scaffolds based on functional elastin-like polymers (ELPs). Our strategy combines ELP cross-linking and assembly, and a variety of standard and novel micro/nanofabrication techniques to create self-supporting membranes down to ∼500 nm thick that incorporate both physical and biomolecular signals, which can be easily tailored for a specific application. In this study we used an ELP that included the cell-binding motif arginine-glycine-aspartic acid-serine (RGDS). Furthermore, fabrication processes were developed to create membranes that exhibited topographical patterns with features down to 200 nm in lateral dimensions and up to 10 μm in height on either one or both sides, uniform and well-defined pores, or multiple ELP layers. A variety of processing parameters were tested in order to optimize membrane fabrication, including ELP and cross-linker concentration, temperature, reaction time and ambient humidity. Membrane micro/nanopatterning, swelling and stiffness were characterized by atomic force microscopy, nanoindentation tests and scanning electron microscopy. Upon immersion in phosphate-buffered saline and an increase in temperature from 25 to 40°C, membranes exhibited a significant increase in surface stiffness, with the reduced Young's modulus increasing with temperature. Finally, rat mesenchymal stem cells were cultured on thin RGDS-containing membranes, which allowed cell adhesion, qualitatively enhanced spreading compared to membranes without RGDS epitopes and permitted proliferation. Furthermore, cell morphology was drastically affected by topographical patterns on the surface of the membranes.

    Topics: Animals; Elastin; Materials Testing; Membranes, Artificial; Microscopy, Atomic Force; Microscopy, Electron, Scanning; Oligopeptides; Rats; Signal Transduction; Surface Properties; Tissue Scaffolds

2012
Mechanisms of interaction between human skin fibroblasts and elastin: differences between elastin fibres and derived peptides.
    Cell biochemistry and function, 1991, Volume: 9, Issue:3

    3H-Labelled kappa-elastin peptides (kE:75 kDa molecular weight) were shown to bind to confluent human skin fibroblast (HSF) cultures in a time-dependent and saturable manner. Scatchard analysis indicated the presence of high affinity binding sites with kD = 2.7 x 10(-10) M and 19,000 sites per cell. Binding of kE to its receptor on HSF accelerates and intensifies the adhesion of insoluble elastin fibres (iE) to confluent HSF. Optimal effect was attained for a kE concentration of 0.3 x 10(-9) M close to kD. This stimulatory effect of kE on the binding of iE to HSF could be inhibited by neomycin, retinal and pertussis toxin, substances which act at different levels of the transduction mechanism following the activation of the receptor and the subsequent triggering of cell biological events (chemotaxis, modification of calcium fluxes). The stimulation of iE adhesion to HSF induced by kE as well as kE binding to the cells could be inhibited by lactose and laminin but not by Arg-Gly-Asp-Ser(RGDS) peptides. This indicates that the elastin peptide receptor on HSF possesses lectin-like properties and shares homology with the laminin receptor as also shown for other cell types. None of the substances tested, that is inhibitors of the transduction mechanism, lactose, laminin and Arg-Gly-Asp-Ser(RGDS) peptides were shown to interfere significantly with the binding of iE (in the absence of added kE) to confluent HSF. The proteins adhering strongly to elastin fibres were isolated by a sequential extraction procedure and the final hydrochloride guanidinium-DTT extract was analysed by SDS-PAGE under reducing conditions, Western blots using specific antibodies against several connective tissue proteins and affinity for [3H]-kE following nitrocellulose electro-transfer of proteins. Fibronectin, vitronectin, tropoelastin(s), and a 120 kDa cysteine rich glycoprotein previously designated as elastonectin were identified. Among these proteins, [3H]-kE was found to bind exclusively to a 65 kDa protein that could be eluted selectively from elastin fibres with a neutral buffer containing 100 mM lactose. Therefore the elastin peptide receptor on human skin fibroblasts shares properties with the elastin receptor characterized from other cell types. Conformational differences between elastin peptides and elastin fibres could explain the differences in the mechanisms of interactions between elastin fibres and elastin peptides with HSF in culture. The stimulatory effect of elastin-de

    Topics: Adult; Amino Acid Sequence; Binding Sites; Elastin; Extracellular Matrix; Female; Fibroblasts; Fibronectins; Glycoproteins; Humans; Molecular Sequence Data; Oligopeptides; Platelet Aggregation Inhibitors; Receptors, Cell Surface; Skin; Tropoelastin; Vitronectin

1991