elastin and acetovanillone

elastin has been researched along with acetovanillone* in 3 studies

Other Studies

3 other study(ies) available for elastin and acetovanillone

ArticleYear
Treatment with apocynin selectively restores hippocampal arteriole function and seizure-induced hyperemia in a model of preeclampsia.
    Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2022, Volume: 42, Issue:8

    Preeclampsia (PE) is a hypertensive disorder of pregnancy associated with neurovascular dysfunction, cognitive impairment and increased seizure susceptibility. Here, we sought to determine if treatment of experimental PE (ePE) rats with apocynin could prevent hippocampal arteriolar (HA) dysfunction and impaired seizure-induced hyperemia within the hippocampus, a brain region central to cognition and seizure generation. Isolated and pressurized HAs from Sprague Dawley rats that were normal pregnant (Preg; n = 8), ePE (n = 8) or ePE treated with apocynin for 2 weeks of gestation (ePE + apo; n = 8) were compared. Hippocampal blood flow (n = 6/group) was measured using hydrogen clearance before and during seizure. Aorta elastin was quantified using histochemistry. ePE was associated with HA dysfunction including reduced contraction to endothelin-1 and diminished dilation to the endothelium-dependent vasodilator NS309 that was prevented by apocynin. However, apocynin had no effect on ePE-induced impairment of dilation to the nitric oxide donor sodium nitroprusside, but increased myogenic tone and substantially increased HA distensibility. Seizure-induced hyperemia was impaired in ePE rats that was restored by apocynin. Aorta from ePE rats had reduced elastin content, suggesting large artery stiffness, that was unaffected by apocynin. Thus, while apocynin partially prevented HA dysfunction, its restoration of functional hyperemia may be protective of seizure-induced injury during eclampsia.

    Topics: Acetophenones; Animals; Arterioles; Elastin; Female; Hippocampus; Humans; Hyperemia; Pre-Eclampsia; Pregnancy; Rats; Rats, Sprague-Dawley; Seizures; Vasodilation

2022
Anti-stiffness effect of apocynin in deoxycorticosterone acetate-salt hypertensive rats via inhibition of oxidative stress.
    Hypertension research : official journal of the Japanese Society of Hypertension, 2013, Volume: 36, Issue:4

    This study sought to determine if apocynin, a nicotinamide adenine dinucleotide phosphate oxidase inhibitor, would attenuate arterial stiffness in salt-sensitive hypertensive rats via structural and functional changes in conduit arteries. We showed that tail blood pressure was significantly higher in deoxycorticosterone acetate-salt-induced hypertensive (DSH) rats compared with the sham control group (P<0.01). Morphological analysis and biochemical assay showed that large arteries in DSH rats underwent significant remodeling including increased medial thickness in carotid arteries compared with the control rats (194.25±5.66 vs. 120.48±7.93 μm, P<0.05) and increased collagen deposition in thoracic aorta (1.03±0.09 vs. 0.85±0.04 mg cm(-1), P<0.05). These changes were associated with increases in reactive oxygen species (ROS) level and increased thoracic aortic stiffness compared with the control rats (6.21±0.79 m s(-1) vs. 4.64±0.59 m s(-1), P<0.01). Treatment with apocynin significantly prevented ROS increases and collagen deposition (0.84±0.04 vs. 1.03±0.09 mg cm(-1), P<0.05), and reduced arterial stiffness as shown by decreased pulse wave velocity in the thoracic aorta (5.31±0.88 vs. 6.21±0.79 m s(-1), P<0.01). Additionally, apocynin prevented carotid artery wall thickening (58.57±3.40 vs. 78.89±4.10 μm, P<0.05). In conclusion we have shown that increased ROS level is associated with increased aortic stiffness, and deposition of collagen in the aortic arterial wall in DSH rats. Apocynin prevented ROS increases and arterial stiffness in DSH rats. Antioxidant therapy may be a potential treatment of large arterial stiffness in salt-sensitive hypertension.

    Topics: Acetophenones; Animals; Antioxidants; Aorta, Thoracic; Blood Pressure; Carotid Arteries; Collagen; Desoxycorticosterone; Elastin; Hypertension; NADPH Oxidases; Oxidative Stress; Pulse Wave Analysis; Rats; Reactive Oxygen Species; Sodium Chloride; Vascular Stiffness

2013
Reduction of NADPH-oxidase activity ameliorates the cardiovascular phenotype in a mouse model of Williams-Beuren Syndrome.
    PLoS genetics, 2012, Volume: 8, Issue:2

    A hallmark feature of Williams-Beuren Syndrome (WBS) is a generalized arteriopathy due to elastin deficiency, presenting as stenoses of medium and large arteries and leading to hypertension and other cardiovascular complications. Deletion of a functional NCF1 gene copy has been shown to protect a proportion of WBS patients against hypertension, likely through reduced NADPH-oxidase (NOX)-mediated oxidative stress. DD mice, carrying a 0.67 Mb heterozygous deletion including the Eln gene, presented with a generalized arteriopathy, hypertension, and cardiac hypertrophy, associated with elevated angiotensin II (angII), oxidative stress parameters, and Ncf1 expression. Genetic (by crossing with Ncf1 mutant) and/or pharmacological (with ang II type 1 receptor blocker, losartan, or NOX inhibitor apocynin) reduction of NOX activity controlled hormonal and biochemical parameters in DD mice, resulting in normalized blood pressure and improved cardiovascular histology. We provide strong evidence for implication of the redox system in the pathophysiology of the cardiovascular disease in a mouse model of WBS. The phenotype of these mice can be ameliorated by either genetic or pharmacological intervention reducing NOX activity, likely through reduced angII-mediated oxidative stress. Therefore, anti-NOX therapy merits evaluation to prevent the potentially serious cardiovascular complications of WBS, as well as in other cardiovascular disorders mediated by similar pathogenic mechanism.

    Topics: Acetophenones; Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Animals; Arteries; Blood Pressure; Cardiomegaly; Constriction, Pathologic; Disease Models, Animal; Elastin; Enzyme Activation; Enzyme Inhibitors; Humans; Hypertension; Losartan; Mice; NADPH Oxidases; Oxidative Stress; Sequence Deletion; Williams Syndrome

2012