Page last updated: 2024-08-17

egtazic acid and pregnenolone sulfate

egtazic acid has been researched along with pregnenolone sulfate in 3 studies

Research

Studies (3)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's2 (66.67)29.6817
2010's1 (33.33)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Carta, M; Covey, DF; Meyer, DA; Partridge, LD; Valenzuela, CF1
Carta, M; Mameli, M; Partridge, LD; Valenzuela, CF1
Cho, JH; Choi, BJ; Choi, IS; Jang, IS; Lee, KH; Lee, MG; Park, HM1

Other Studies

3 other study(ies) available for egtazic acid and pregnenolone sulfate

ArticleYear
Neurosteroids enhance spontaneous glutamate release in hippocampal neurons. Possible role of metabotropic sigma1-like receptors.
    The Journal of biological chemistry, 2002, Aug-09, Volume: 277, Issue:32

    Topics: Animals; Animals, Newborn; Binding Sites; Cells, Cultured; Central Nervous System; Chelating Agents; Egtazic Acid; Electrophysiology; Glutamic Acid; Haloperidol; Hippocampus; Neurons; Pertussis Toxin; Pregnenolone; Protein Binding; Rats; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Steroids; Virulence Factors, Bordetella

2002
Neurosteroid-induced plasticity of immature synapses via retrograde modulation of presynaptic NMDA receptors.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2005, Mar-02, Volume: 25, Issue:9

    Topics: Age Factors; Animals; Animals, Newborn; Antibodies; Calcium; Calcium Channel Blockers; Chelating Agents; Dizocilpine Maleate; Dose-Response Relationship, Drug; Dose-Response Relationship, Radiation; Drug Interactions; Egtazic Acid; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Hippocampus; In Vitro Techniques; Membrane Potentials; Neuronal Plasticity; Patch-Clamp Techniques; Piperidines; Pregnenolone; Presynaptic Terminals; Quinolinic Acids; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Sodium Channel Blockers; Synapses; Synaptic Transmission; Tetrodotoxin; Time Factors

2005
Pregnenolone sulfate enhances spontaneous glutamate release by inducing presynaptic Ca2+-induced Ca2+ release.
    Neuroscience, 2010, Nov-24, Volume: 171, Issue:1

    Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Animals, Newborn; Biophysics; Cadmium Chloride; Calcium; Calcium Channel Blockers; Chelating Agents; Dose-Response Relationship, Drug; Drug Interactions; Egtazic Acid; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Postsynaptic Potentials; Glutamic Acid; Hippocampus; In Vitro Techniques; Kainic Acid; Long-Term Potentiation; Neurons; Patch-Clamp Techniques; Piperazines; Pregnenolone; Presynaptic Terminals; Rats; Rats, Sprague-Dawley; Sodium Channel Blockers; Tetrodotoxin

2010