egtazic acid has been researched along with 5-(alpha-methyl-4-bromobenzylamino)phosphonomethyl-1,4-dihydroquinoxaline-2,3-dione in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (100.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Jia, Y; Kaang, BK; Ko, SW; Lee, YS; Li, BM; Shum, F; Toyoda, H; Wu, LJ; Xu, H; Zhang, XH; Zhao, MG; Zhuo, M | 1 |
Bose, R; Parkinson, FE; Zamzow, CR | 1 |
2 other study(ies) available for egtazic acid and 5-(alpha-methyl-4-bromobenzylamino)phosphonomethyl-1,4-dihydroquinoxaline-2,3-dione
Article | Year |
---|---|
Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory.
Topics: Animals; Behavior, Animal; Blotting, Western; Dose-Response Relationship, Drug; Drug Interactions; Egtazic Acid; Electric Stimulation; Electroporation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Fear; Gene Expression Regulation; Hippocampus; In Vitro Techniques; Long-Term Potentiation; Male; Memory; Mice; Mice, Inbred C57BL; Patch-Clamp Techniques; Phenols; Piperidines; Prefrontal Cortex; Protein Subunits; Pyramidal Cells; Quinoxalines; Receptors, N-Methyl-D-Aspartate; RNA, Small Interfering | 2005 |
N-methyl-D-aspartate-evoked adenosine and inosine release from neurons requires extracellular calcium.
Topics: Adenosine; Animals; Calcium; Calcium Signaling; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Cerebral Cortex; Chelating Agents; Dizocilpine Maleate; Egtazic Acid; Excitatory Amino Acid Antagonists; Inosine; N-Methylaspartate; Neurons; Piperidines; Purines; Quinoxalines; Rats; Receptors, N-Methyl-D-Aspartate | 2009 |