Page last updated: 2024-08-25

efaroxan and tracizoline

efaroxan has been researched along with tracizoline in 4 studies

Research

Studies (4)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's3 (75.00)29.6817
2010's1 (25.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Arrault, A; Guillaumet, G; Mérour, JY; Pfeiffer, B; Renard, P; Rettori, MC; Scalbert, E; Touzeau, F1
Bousquet, P; Brasili, L; Dontenwill, M; Feldman, J; Gentili, F; Ghelfi, F; Giannella, M; Piergentili, A; Pigini, M; Quaglia, W1
Agbaba, D; Azzali, E; Costantino, G; Glisic, S; Laurila, JM; Nikolic, K; Perovic, V; Pieroni, M; Radi, M; Scheinin, M; Srdic-Rajic, T; Tassini, S; Veljkovic, N; Vucicevic, J1
Cardinaletti, C; Carrieri, A; Gentili, F; Ghelfi, F; Mattioli, L; Perfumi, M; Pigini, M; Vesprini, C1

Other Studies

4 other study(ies) available for efaroxan and tracizoline

ArticleYear
Synthesis and biological evaluation of new 2-(4,5-dihydro-1H-imidazol-2-yl)-3,4-dihydro-2H-1,4-benzoxazine derivatives.
    Journal of medicinal chemistry, 2003, May-08, Volume: 46, Issue:10

    Topics: Adrenal Medulla; Animals; Antihypertensive Agents; Binding Sites; Blood Pressure; Cattle; Frontal Lobe; Heart Rate; Imidazoles; Imidazoline Receptors; In Vitro Techniques; Kidney; Oxazines; Rabbits; Radioligand Assay; Rats; Rats, Inbred SHR; Rats, Wistar; Receptors, Adrenergic, alpha-1; Receptors, Adrenergic, alpha-2; Receptors, Drug; Stereoisomerism; Structure-Activity Relationship

2003
Imidazoline binding sites (IBS) profile modulation: key role of the bridge in determining I1-IBS or I2-IBS selectivity within a series of 2-phenoxymethylimidazoline analogues.
    Journal of medicinal chemistry, 2003, May-22, Volume: 46, Issue:11

    Topics: Animals; Binding Sites; Blood Pressure; Heart Rate; Imidazoles; Imidazoline Receptors; Kidney; Male; PC12 Cells; Rabbits; Radioligand Assay; Rats; Receptors, Drug; Stereoisomerism; Structure-Activity Relationship

2003
A combined ligand- and structure-based approach for the identification of rilmenidine-derived compounds which synergize the antitumor effects of doxorubicin.
    Bioorganic & medicinal chemistry, 2016, 07-15, Volume: 24, Issue:14

    Topics: Adrenergic alpha-Agonists; Antibiotics, Antineoplastic; Apoptosis; Doxorubicin; Drug Synergism; Humans; K562 Cells; Ligands; Molecular Structure; Oxazoles; Receptors, Adrenergic, alpha-2; Rilmenidine

2016
Involvement of I2-imidazoline binding sites in positive and negative morphine analgesia modulatory effects.
    European journal of pharmacology, 2006, Dec-28, Volume: 553, Issue:1-3

    Topics: Adrenergic alpha-Antagonists; Analgesics, Opioid; Animals; Benzofurans; CHO Cells; Cricetinae; Idazoxan; Imidazoles; Imidazoline Receptors; Male; Mice; Models, Molecular; Morphine; Naloxone; Narcotic Antagonists; Pain Measurement; Radioligand Assay; Reaction Time; Receptors, Adrenergic, alpha-2; Receptors, Drug; Receptors, Opioid, mu; Yohimbine

2006