edrophonium bromide has been researched along with decamethonium in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (100.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Andrisano, V; Bartolini, M; Bidon-Chanal, A; de Austria, C; del Monte-Millán, M; Dorronsoro, I; García-Palomero, E; Luque, FJ; Martínez, A; Medina, M; Muñoz-Ruiz, P; Orozco, M; Rubio, L; Usán, P; Valenzuela, R | 1 |
Agnusdei, M; Belinskaya, T; Borriello, M; Brindisi, M; Butini, S; Campiani, G; Catalanotti, B; Fattorusso, C; Fiorini, I; Gemma, S; Nacci, V; Novellino, E; Panico, A; Persico, M; Ros, S; Saxena, A | 1 |
2 other study(ies) available for edrophonium bromide and decamethonium
Article | Year |
---|---|
Design, synthesis, and biological evaluation of dual binding site acetylcholinesterase inhibitors: new disease-modifying agents for Alzheimer's disease.
Topics: Acetylcholinesterase; Alzheimer Disease; Amyloid beta-Peptides; Animals; Binding Sites; Butyrylcholinesterase; Cattle; Cell Line, Tumor; Cholinesterase Inhibitors; Dimerization; Drug Design; Erythrocytes; Fluorometry; Humans; Models, Molecular; Nootropic Agents; Protein Binding; Structure-Activity Relationship; Tacrine | 2005 |
Exploiting protein fluctuations at the active-site gorge of human cholinesterases: further optimization of the design strategy to develop extremely potent inhibitors.
Topics: Acetylcholinesterase; Binding Sites; Butyrylcholinesterase; Cholinesterase Inhibitors; Computational Biology; Crystallography, X-Ray; Drug Design; Humans; Models, Molecular; Protein Conformation; Structure-Activity Relationship; Tacrine | 2008 |