eckstolonol has been researched along with 7-phloroeckol* in 2 studies
2 other study(ies) available for eckstolonol and 7-phloroeckol
Article | Year |
---|---|
Protein tyrosine phosphatase 1B and α-glucosidase inhibitory Phlorotannins from edible brown algae, Ecklonia stolonifera and Eisenia bicyclis.
The present work investigates protein tyrosine phosphatase 1B (PTP1B) and the α-glucosidase inhibitory activities of two edible brown algae, Ecklonia stolonifera and Eisenia bicyclis, as well as in their isolated phlorotannins. Since the individual extracts and fractions showed significant inhibitory activities, column chromatography was performed to isolate six phlorotannins, phloroglucinol (1), dioxinodehydroeckol (2), eckol (3), phlorofurofucoeckol-A (4), dieckol (5), and 7-phloroeckol (6). Phlorotannins 3-6 were potent and noncompetitive PTP1B inhibitors with IC(50) values ranging from 0.56 to 2.64 µM; 4-6 exhibited the most potent α-glucosidase inhibition with IC(50) values ranging from 1.37 to 6.13 µM. Interestingly, 4 and 6 were noncompetitive, while 5 exhibited competitive inhibition in an α-glucosidase assay. E. stolonifera and E. bicyclis as well as their isolated phlorotannins therefore possessed marked PTP1B and α-glucosidase inhibitory activities; this could lead to opportunities in the development of therapeutic agents to control the postprandial blood glucose level and thereby prevent diabetic complications. Topics: alpha-Glucosidases; Benzofurans; Blood Glucose; Complex Mixtures; Diabetes Mellitus; Dioxins; Enzyme Inhibitors; Glycoside Hydrolase Inhibitors; Humans; Hyperglycemia; Hypoglycemic Agents; Kinetics; Magnetic Resonance Spectroscopy; Phaeophyceae; Phloroglucinol; Protein Tyrosine Phosphatase, Non-Receptor Type 1; Solutions; Spectrophotometry; Tannins; Yeasts | 2011 |
Inhibitory effect of phlorotannins isolated from Ecklonia cava on mushroom tyrosinase activity and melanin formation in mouse B16F10 melanoma cells.
In this study, to assess the feasibility of phlorotannins isolated from Ecklonia cava as an inhibitor of melanin formation, we evaluated its inhibitory effects on mushroom tyrosinase and 3-isobutyl-1-methylxanthine (IBMX)-induced melanin formation inhibitory effects in B16F10 melanoma cell. The ethanolic (EtOH) extract and ethyl acetate (EtOAc) soluble fraction obtained from E. cava evidenced a marked inhibitory effect on mushroom tyrosinase at a concentration of 50 μg/mL. Repeated column chromatography of the active EtOAc fraction resulted in the isolation of three phlorotannins. Their structures were elucidated on the basis of spectroscopic techniques [1D and 2D nuclear magnetic resonance (NMR)] and characterized as phloroglucinol (1), dioxinodehydroeckol (2), and 7-phloroeckol (3), respectively. Among the compounds, 7-phloroeckol (3) evidenced more potent tyrosinase inhibitory effect with an IC(50) value of 0.85 μM than arbutin (IC(50) = 243.16 μM) and kojic acid (IC(50) = 40.28 μM), which were used as positive controls. Lineweaver-Burk plots suggest that 7-phloroeckol plays as a noncompetitive inhibitor against tyrosinase. Furthermore, these compounds were evaluated for their inhibitory effects on IBMX-induced melanin formation in B16F10 melanoma cells. Treatment with 7-phloroeckol (6.25-100 μM) resulted in a significant inhibition of melanin production in the melanoma cells. In this study, we suggest that 7-phloroeckol might prove useful as a novel inhibitor of melanin formation in cosmetic applications. Topics: Agaricales; Animals; Cell Line, Tumor; Dioxins; Enzyme Inhibitors; Flavonoids; Melanins; Melanoma, Experimental; Mice; Monophenol Monooxygenase; Phaeophyceae; Phenols; Phloroglucinol; Polyphenols | 2009 |