ebselen and verapamil

ebselen has been researched along with verapamil in 5 studies

Research

Studies (5)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's1 (20.00)29.6817
2010's3 (60.00)24.3611
2020's1 (20.00)2.80

Authors

AuthorsStudies
Alvarez-Pedraglio, A; Colmenarejo, G; Lavandera, JL1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1
Ji, L; Kong, L; Li, S; Liu, X; Lu, D; Luo, H; Peng, W; Qu, L; Wang, C; Wang, X; Yin, F1
Chattipakorn, N; Chattipakorn, S; Chinda, K; Fucharoen, S; Kumfu, S1
Chattipakorn, N; Chattipakorn, S; Fucharoen, S; Kumfu, S1

Other Studies

5 other study(ies) available for ebselen and verapamil

ArticleYear
Cheminformatic models to predict binding affinities to human serum albumin.
    Journal of medicinal chemistry, 2001, Dec-06, Volume: 44, Issue:25

    Topics: Adrenergic beta-Antagonists; Antidepressive Agents, Tricyclic; Chromatography, Affinity; Cyclooxygenase Inhibitors; Databases, Factual; Humans; Hydrophobic and Hydrophilic Interactions; Penicillins; Pharmaceutical Preparations; Protein Binding; Quantitative Structure-Activity Relationship; Reproducibility of Results; Serum Albumin; Steroids

2001
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012
Synthesis and evaluation of multi-target-directed ligands with BACE-1 inhibitory and Nrf2 agonist activities as potential agents against Alzheimer's disease.
    European journal of medicinal chemistry, 2021, Jul-05, Volume: 219

    Topics: Alzheimer Disease; Amyloid beta-Peptides; Amyloid Precursor Protein Secretases; Antioxidants; Aspartic Acid Endopeptidases; Azoles; Binding Sites; Blood-Brain Barrier; Cyclic S-Oxides; Drug Design; Humans; Interleukin-6; Isoindoles; Ligands; Mitochondria; Molecular Docking Simulation; Neuroprotective Agents; NF-E2-Related Factor 2; Organoselenium Compounds; Oxidative Stress; Peptide Fragments; Reactive Oxygen Species; Selenium; Signal Transduction; Thiadiazines

2021
T-type calcium channel blockade improves survival and cardiovascular function in thalassemic mice.
    European journal of haematology, 2012, Volume: 88, Issue:6

    Topics: Animals; Azoles; Base Sequence; beta-Thalassemia; Calcium Channel Blockers; Calcium Channels, L-Type; Calcium Channels, T-Type; Cardiovascular System; Deferoxamine; Dihydropyridines; Disease Models, Animal; DNA Primers; Heart Rate; Humans; Iron; Iron Chelating Agents; Iron, Dietary; Isoindoles; Mice; Mice, Inbred C57BL; Mice, Knockout; Nifedipine; Nitrophenols; Organ Size; Organophosphorus Compounds; Organoselenium Compounds; RNA, Messenger; Ventricular Function, Left; Verapamil

2012
Ferric iron uptake into cardiomyocytes of β-thalassemic mice is not through calcium channels.
    Drug and chemical toxicology, 2013, Volume: 36, Issue:3

    Topics: Animals; Azoles; beta-Thalassemia; Calcium Channel Blockers; Calcium Channels; Calcium Channels, L-Type; Calcium Channels, T-Type; Cation Transport Proteins; Cell Survival; Cells, Cultured; Deferoxamine; Dihydropyridines; Disease Models, Animal; Ferric Compounds; Heart Ventricles; Iron Overload; Isoindoles; Mice; Mice, Inbred C57BL; Mice, Knockout; Myocytes, Cardiac; Nitrophenols; Organophosphorus Compounds; Organoselenium Compounds; Quaternary Ammonium Compounds; Receptors, Transferrin; Verapamil

2013