ebselen has been researched along with lysine in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (60.00) | 29.6817 |
2010's | 1 (20.00) | 24.3611 |
2020's | 1 (20.00) | 2.80 |
Authors | Studies |
---|---|
Dranchak, PK; Huang, R; Inglese, J; Lamy, L; Oliphant, E; Queme, B; Tao, D; Wang, Y; Xia, M | 1 |
Brodsky, S; Fujita, T; Goligorsky, MS; Nakao, A; Noiri, E; Ohno, M; Tsukahara, H; Uchida, K | 1 |
Cho, EJ; Rhyu, DY; Yokozawa, T | 1 |
Holland, SM; Kishida, KT; Klann, E; Pao, M | 1 |
Chen, C; Ge, Y; Liu, Y; Su, JP; Wang, WM; Xiang, Y; Yang, KW; Zhang, Y | 1 |
5 other study(ies) available for ebselen and lysine
Article | Year |
---|---|
In vivo quantitative high-throughput screening for drug discovery and comparative toxicology.
Topics: Animals; Caenorhabditis elegans; Drug Discovery; High-Throughput Screening Assays; Humans; Proteomics; Small Molecule Libraries | 2023 |
Oxidative and nitrosative stress in acute renal ischemia.
Topics: Animals; Azoles; Blotting, Western; Cell Line; Cyclic N-Oxides; DNA Damage; Enzyme Inhibitors; Free Radical Scavengers; Immunohistochemistry; Ischemia; Isoindoles; Kidney; Lipid Peroxidation; Lysine; Macrophages; Male; Mice; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; Nitrites; Organoselenium Compounds; Oxidative Stress; Peroxynitrous Acid; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Spin Labels; Superoxide Dismutase; Tyrosine | 2001 |
(-)-Epicatechin 3-O-gallate ameliorates the damages related to peroxynitrite production by mechanisms distinct from those of other free radical inhibitors.
Topics: Animals; Azoles; Blood Urea Nitrogen; Catechin; Copper; Creatinine; Disease Models, Animal; Dose-Response Relationship, Drug; Free Radical Scavengers; Isoindoles; Japan; Kidney; Lipopolysaccharides; Lysine; Male; Nitric Oxide; Organoselenium Compounds; Peroxidase; Phytotherapy; Plant Extracts; Plant Roots; Proteinuria; Rats; Rats, Wistar; Reperfusion Injury; Rheum; Superoxide Dismutase; Tyrosine; Uric Acid; Zinc | 2004 |
NADPH oxidase is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Acetylcysteine; Animals; Azoles; Blotting, Western; Catalase; Catecholamines; Dopamine Agonists; Drug Interactions; Enzyme Activation; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Extracellular Signal-Regulated MAP Kinases; Free Radical Scavengers; Hippocampus; Imidazolines; In Vitro Techniques; Isoindoles; Lysine; Metalloporphyrins; Mice; Mice, Inbred C57BL; N-Methylaspartate; NADPH Oxidases; Neurons; NG-Nitroarginine Methyl Ester; Organoselenium Compounds; Patch-Clamp Techniques; Phosphorylation; Reactive Oxygen Species; Receptors, N-Methyl-D-Aspartate; Superoxide Dismutase | 2005 |
A protein structure-guided covalent scaffold selectively targets the B1 and B2 subclass metallo-β-lactamases.
Topics: Amino Acid Sequence; Azoles; beta-Lactamase Inhibitors; beta-Lactamases; Catalytic Domain; Cysteine; Escherichia coli; Fluorescent Dyes; Isoindoles; Lysine; Organoselenium Compounds; Rhodamines | 2018 |