dynorphins has been researched along with deltakephalin* in 2 studies
2 other study(ies) available for dynorphins and deltakephalin
Article | Year |
---|---|
Altered opioid-mediated control of the spinal release of dynorphin and met-enkephalin in polyarthritic rats.
Previous studies showed that spinal opioidergic neurotransmission is markedly altered in the polyarthritic rat, a model of chronic inflammatory pain. Present investigations aimed at assessing possible changes in opioid-mediated control of the spinal outflow of met-enkephalin (ME) and dynorphin (DYN) in these animals. Intrathecal (i.t.) perfusion under halothane anesthesia showed that polyarthritis was associated with both a 40% decrease in the spinal outflow of ME-like material (MELM) and a 90% increase in that of DYNLM. Local treatment with the mu-opioid agonist DAGO (10 microM i.t.) inhibited equally (-30%) the MELM outflow in polyarthritic and control rats, whereas the delta agonist DTLET (10 microM i.t.) also reduced the peptide outflow in controls (-27%) but enhanced it in polyarthritic animals (+56%). On the other hand, both DAGO (10 microM i.t.) and DTLET (10 microM i.t.) decreased (-40 and -49%) DYNLM outflow in polyarthritic rats, but were inactive in controls. Finally, neither MELM outflow nor that of DYNLM were affected by the kappa-agonist U50488H (10 microM i.t.) in both groups of rats. In all cases, the changes due to active agonists could be prevented by specific antagonists which were inactive on their own except the kappa antagonist nor-binaltorphimine (10 microM i.t.) that decreased (-38%) DYNLM outflow in polyarthritic rats. These data indicate that functional changes in spinal opioid receptors may promote enkephalinergic neurotransmission and reduce dynorphinergic neurotransmission in polyarthritic rats, thereby contributing to the analgesic efficacy of opioids in inflammatory pain. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Analgesics, Non-Narcotic; Analgesics, Opioid; Anesthesia; Animals; Arthritis; Dynorphins; Enkephalin, Ala(2)-MePhe(4)-Gly(5)-; Enkephalin, Methionine; Iodine Radioisotopes; Ligands; Male; Naloxone; Naltrexone; Narcotic Antagonists; Oligopeptides; Radioimmunoassay; Rats; Rats, Sprague-Dawley; Receptors, Opioid, delta; Receptors, Opioid, kappa; Receptors, Opioid, mu; Spinal Cord | 2000 |
Effects of preferential delta and kappa opioid receptor agonists on the intake of hypotonic saline.
A previous study has implicated central mu opioid receptors in the preference for salt solutions. Because mu, kappa and delta receptors are all thought to play a role in food intake and/or the mediation of palatability, we performed a series of experiments to determine whether preferential agonists at kappa and delta receptors might also stimulate the intake of salt solutions. When injected centrally into nondeprived rats, two selective agonists at delta receptors caused increases in the intake of 0.6% saline; the intake of concurrently available water was either unchanged or slightly increased. The selective kappa agonist U-50,488H had no effect on water or saline intake, whereas the preferential kappa agonist DAFPHEDYN caused a delayed increase in saline intake. These results indicate a role for central delta receptors in the preference for salt solutions, and are consistent with the suggestion that opioids play a role in the mediation of palatability. Topics: 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer; Animals; Drinking; Dynorphins; Eating; Enkephalin, D-Penicillamine (2,5)-; Enkephalins; Food Preferences; Hypotonic Solutions; Injections, Intraventricular; Male; Oligopeptides; Peptide Fragments; Pyrrolidines; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, Opioid, delta; Receptors, Opioid, kappa; Taste | 1990 |