dynorphins has been researched along with 7-chlorokynurenic-acid* in 4 studies
4 other study(ies) available for dynorphins and 7-chlorokynurenic-acid
Article | Year |
---|---|
Intrathecally administered big dynorphin, a prodynorphin-derived peptide, produces nociceptive behavior through an N-methyl-D-aspartate receptor mechanism.
Intrathecal (i.t.) administration of big dynorphin (1-10 fmol), a prodynorphin-derived peptide consisting of dynorphin A and dynorphin B, to mice produced a characteristic behavioral response, the biting and/or licking of the hindpaw and the tail along with slight hindlimb scratching directed toward the flank, which peaked at 5-15 min after an injection. Dynorphin A produced a similar response, though the doses required were higher (0.1-30 pmol) whereas dynorphin B was practically inactive even at 1000 pmol. The behavior induced by big dynorphin (3 fmol) was dose-dependently inhibited by intraperitoneal injection of morphine (0.125-2 mg/kg) and also dose-dependently, by i.t. co-administration of D(-)-2-amino-5-phosphonovaleric acid (D-APV) (1-4 nmol), a competitive N-methyl-D-aspartate (NMDA) receptor antagonist, MK-801 (0.25-4 nmol), an NMDA ion-channel blocker, and ifenprodil (2-8 pmol), an inhibitor of the NMDA receptor ion-channel complex interacting with the NR2B subunit and the polyamine recognition site. On the other hand, naloxone, an opioid receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), a non-NMDA glutamate receptor antagonist, 7-chlorokynurenic acid, a competitive antagonist of the glycine recognition site on the NMDA receptor ion-channel complex, [D-Phe(7),D-His(9)]-substance P(6-11), a specific antagonist for substance P (NK1) receptors, and MEN-10376, a tachykinin NK2 receptor antagonist, had no effect. These results suggest that big dynorphin-induced nociceptive behavior is mediated through the activation of the NMDA receptor ion-channel complex by acting on the NR2B subunit and/or the polyamine recognition site but not on the glycine recognition site, and does not involve opioid, non-NMDA glutamate receptor mechanisms or tachykinin receptors in the mouse spinal cord. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Analgesics, Opioid; Animals; Behavior, Animal; Dizocilpine Maleate; Dynorphins; Endorphins; Enkephalins; Excitatory Amino Acid Antagonists; Injections, Spinal; Kynurenic Acid; Male; Mice; Morphine; Neurokinin A; Nociceptors; Peptide Fragments; Piperidines; Protein Precursors; Receptors, N-Methyl-D-Aspartate; Receptors, Tachykinin; Substance P | 2002 |
Dynorphin A (1-13) neurotoxicity in vitro: opioid and non-opioid mechanisms in mouse spinal cord neurons.
Dynorphin A is an endogenous opioid peptide that preferentially activates kappa-opioid receptors and is antinociceptive at physiological concentrations. Levels of dynorphin A and a major metabolite, dynorphin A (1-13), increase significantly following spinal cord trauma and reportedly contribute to neurodegeneration associated with secondary injury. Interestingly, both kappa-opioid and N-methyl-D-aspartate (NMDA) receptor antagonists can modulate dynorphin toxicity, suggesting that dynorphin is acting (directly or indirectly) through kappa-opioid and/or NMDA receptor types. Despite these findings, few studies have systematically explored dynorphin toxicity at the cellular level in defined populations of neurons coexpressing kappa-opioid and NMDA receptors. To address this question, we isolated populations of neurons enriched in both kappa-opioid and NMDA receptors from embryonic mouse spinal cord and examined the effects of dynorphin A (1-13) on intracellular calcium concentration ([Ca2+]i) and neuronal survival in vitro. Time-lapse photography was used to repeatedly follow the same neurons before and during experimental treatments. At micromolar concentrations, dynorphin A (1-13) elevated [Ca2+]i and caused a significant loss of neurons. The excitotoxic effects were prevented by MK-801 (Dizocilpine) (10 microM), 2-amino-5-phosphopentanoic acid (100 microM), or 7-chlorokynurenic acid (100 microM)--suggesting that dynorphin A (1-13) was acting (directly or indirectly) through NMDA receptors. In contrast, cotreatment with (-)-naloxone (3 microM), or the more selective kappa-opioid receptor antagonist nor-binaltorphimine (3 microM), exacerbated dynorphin A (1-13)-induced neuronal loss; however, cell losses were not enhanced by the inactive stereoisomer (+)-naloxone (3 microM). Neuronal losses were not seen with exposure to the opioid antagonists alone (10 microM). Thus, opioid receptor blockade significantly increased toxicity, but only in the presence of excitotoxic levels of dynorphin. This provided indirect evidence that dynorphin also stimulates kappa-opioid receptors and suggests that kappa receptor activation may be moderately neuroprotective in the presence of an excitotoxic insult. Our findings suggest that dynorphin A (1-13) can have paradoxical effects on neuronal viability through both opioid and non-opioid (glutamatergic) receptor-mediated actions. Therefore, dynorphin A potentially modulates secondary neurodegeneration in the spinal cord through Topics: Analgesics, Opioid; Animals; Calcium; Cell Survival; Dizocilpine Maleate; Dynorphins; Embryo, Mammalian; Kynurenic Acid; Mice; Mice, Inbred ICR; Naloxone; Naltrexone; Narcotic Antagonists; Neurons; Neurotoxins; Peptide Fragments; Receptors, N-Methyl-D-Aspartate; Spinal Cord; Valine | 1999 |
Neurotrophin modulation of NMDA receptors in cultured murine and isolated rat neurons.
Neurotrophin modulation of NMDA receptors in cultured murine and isolated rat neurons. J. Neurophysiol. 78: 2363-2371, 1997. Patch-clamp and calcium imaging techniques were used to assess the acute effects of the neurotrophins, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and nerve growth factor (NGF), on the responses of cultured and acutely isolated hippocampal and cultured striatal neurons to the glutamate receptor agonist N-methyl--aspartic acid (NMDA). The effects of BDNF on NMDA-activated currents were examined in greater detail. Currents evoked by NMDA, and the accompanying changes in intracellular calcium, were enhanced by low concentrations of the neurotrophins (1-20 ng/ml). The potentiation by the neurotrophins was rapid in onset and offset (<1 s). The neurotrophins also reduced desensitization of these currents in most cells. The enhancement of NMDA-activated currents by BDNF was observed using both perforated and whole cell patch recording techniques and could be demonstrated in outside-out patches. Furthermore, its effects were not attenuated by pretreatment with the protein kinase inhibitors genistein or 1-(5-isoquinolynesulfony)2-methylpiperazine (H7). Therefore, the actions of BDNF do not appear to be mediated by phosphorylation. Similar enhancements were observed with NT-3 and NT-4 and with NGF despite the fact that hippocampal neurons lack TrkA receptors. All together this evidence suggests that the enhancement of NMDA-evoked currents is unlikely to be mediated through the activation of growth factor receptors. Modulation of NMDA responses by BDNF was dependent on the concentration of extracellular glycine. The most pronounced potentiation by BDNF was observed at low concentrations, whereas no potentiation was observed in saturating concentrations of glycine, suggesting that BDNF may have increased the affinity of the NMDA receptor for glycine. However, the competitive glycine-site antagonist 7-chloro-kynurenic acid blocked the enhancement by BDNF without shifting the dose-inhibition relationship for this antagonist, and Mg2+ consistently depressed the potentiation of NMDA-evoked currents by BDNF, indicating that BDNF does not alter glycine affinity. BDNF also reversibly increased the probability of opening of NMDA channels recorded from outside-out patches taken from cultured hippocampal neurons. Other unrelated peptides including dynorphin and somatostatin also caused a glycine-dependent enhancement of NMDA currents Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; Animals; Brain-Derived Neurotrophic Factor; Calcium; Cells, Cultured; Corpus Striatum; Dynorphins; Embryo, Mammalian; Excitatory Amino Acid Antagonists; Glycine; Hippocampus; Ion Channel Gating; Kynurenic Acid; Magnesium; Membrane Potentials; Mice; N-Methylaspartate; Nerve Growth Factors; Neurons; Neurotrophin 3; Protein Kinase Inhibitors; Pyramidal Cells; Rats; Rats, Wistar; Receptors, Glycine; Receptors, N-Methyl-D-Aspartate | 1997 |
Blockade of the glycine modulatory site of NMDA receptors modifies dynorphin-induced behavioral effects.
Intrathecal (i.t.) administration of the opioid dynorphin causes neurological dysfunction and tissue damage. It has been suggested that these effects of dynorphin may be mediated, in part, by N-methyl-D-aspartate (NMDA) receptors. In the present studies, recently developed compounds that block the glycine potentiation site of the NMDA receptor (Gly-NMDA site), including the competitive antagonist 5-fluoro-indole-2-carboxylic acid and the non-competitive antagonist 7-chlorokynurenic acid, prevented the neurologic deficits and mortality caused by i.t. dynorphin A(1-17). These findings are consistent with the hypothesis that dynorphin-induced neurological dysfunction involves activation of NMDA receptors. Moreover, blockade of the Gly-NMDA site may provide an alternative to blockade of the glutamate binding site or NMDA receptor ion channel as an in vivo pharmacological strategy to treat conditions previously associated with excitotoxin mediated tissue injury. Topics: Animals; Dynorphins; Glycine; Indoles; Injections, Spinal; Kynurenic Acid; Male; Paralysis; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter | 1990 |