drosocin has been researched along with oncocin* in 2 studies
2 other study(ies) available for drosocin and oncocin
Article | Year |
---|---|
Blood-brain barrier transport of short proline-rich antimicrobial peptides.
Infections by antibiotic-resistant bacteria are becoming a great risk for human health, leading to an urgent need for new efficient antibacterial therapies. The short, proline-rich antimicrobial peptides from insects gained a lot of interest as a potential antibacterial treatment, having a low toxicity profile and being mainly active against Gram-negative bacteria. To know whether these antimicrobial peptides can be used for the treatment of cerebral infections, the blood-brain barrier transport characteristics of these peptides were investigated. This study describes the results of the in vivo blood-brain barrier experiments in mice, as well as the in vitro metabolic stability in mouse plasma and brain of apidaecin Api137, oncocin, drosocin and drosocin Pro5Hyp. The four investigated peptides showed a significant influx into the brain with a K(in) ranging between 0.37 and 0.86 µL/g x min and brain distribution volumes of 19.6 to 25.8 µL/g. Only for drosocin, a significant efflux was determined, with a k(out) of 0.22 min(-1). After entering the brain, oncocin was for approximately 80% trapped in the endothelial cells, while the other peptides reached the brain parenchyma for about 70%. All peptides were stable in plasma and brain during the experiments, with estimated metabolic half-lives ranging between 47 min and 637 min. We conclude that the investigated short, proline-rich antimicrobial peptides show an influx into the brain, which make them a promising antibacterial treatment of cerebral infections. Topics: Amino Acid Sequence; Animals; Anti-Infective Agents; Antimicrobial Cationic Peptides; Blood-Brain Barrier; Brain; Glycopeptides; Humans; Insect Proteins; Male; Mice; Molecular Sequence Data | 2014 |
Oncocin (VDKPPYLPRPRPPRRIYNR-NH2): a novel antibacterial peptide optimized against gram-negative human pathogens.
Small proline-rich antimicrobial peptides (AMP) have attracted considerable interest, as they target specific intracellular bacterial components and do not act by lytic mechanisms. Here, a novel peptide, termed oncocin (VDKPPYLPRPRPPRRIYNR-NH(2)), is reported that was optimized for the treatment of Gram-negative pathogens. Its minimal inhibitory concentrations in tryptic soy broth medium ranged from 0.125 to 8 microg/mL for 34 different strains and clinical isolates of Enterobacteriaceae and nonfermenters, such as Escherichia coli , Pseudomonas aeruginosa , and Acinetobacter baumannii . Substitutions of two arginine residues by ornithine increased the half-lives in full mouse serum from about 20 min to greater than 180 min and the activity. Both optimized oncocin derivatives were neither toxic to human cell lines nor hemolytic to human erythrocytes. They could freely penetrate lipid membranes and were washed out completely without any sign of lytic activity, as assessed by quartz crystal microbalance. Fluorescence labeled peptides entered the periplasmic space within 20 min at room temperature and homogeneously stained E. coli within 50 min. In conclusion, the optimized oncocin represents a very promising candidate for future in vivo work and may serve as a novel lead compound for an antibacterial drug class. Topics: Amino Acid Sequence; Animals; Anti-Bacterial Agents; Antimicrobial Cationic Peptides; Cell Line, Tumor; Cell Survival; Gram-Negative Bacteria; Hemolysis; Humans; Membranes, Artificial; Mice; Microbial Sensitivity Tests; Molecular Sequence Data; Peptides; Permeability; Structure-Activity Relationship | 2010 |