doxorubicin hydrochloride has been researched along with vinblastine sulfate in 8 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (12.50) | 18.2507 |
2000's | 1 (12.50) | 29.6817 |
2010's | 6 (75.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Aghaee, E; Böhm, KJ; Ghasemi, JB; Ivanov, I; Müller, K; Prinz, H; Ridder, AK; Vogel, K | 1 |
Kuoh, CS; Lee, KH; Liou, MJ; Nagao, T; Teng, CM; Wu, TS | 1 |
Baasner, S; Böhm, KJ; Gerlach, M; Günther, EG; Müller, K; Prinz, H; Schmidt, P; Unger, E; Zuse, A | 1 |
Baasner, S; Böhm, KJ; Gerlach, M; Günther, EG; Müller, K; Nickel, HC; Prinz, H; Schmidt, P; Unger, E | 1 |
Böhm, KJ; Müller, K; Prinz, H; Surkau, G | 1 |
Fisk, L; Greene, N; Naven, RT; Note, RR; Patel, ML; Pelletier, DJ | 1 |
Ekins, S; Williams, AJ; Xu, JJ | 1 |
Batista-Gonzalez, A; Brunhofer, G; Fallarero, A; Gopi Mohan, C; Karlsson, D; Shinde, P; Vuorela, P | 1 |
8 other study(ies) available for doxorubicin hydrochloride and vinblastine sulfate
Article | Year |
---|---|
N-Heterocyclic (4-Phenylpiperazin-1-yl)methanones Derived from Phenoxazine and Phenothiazine as Highly Potent Inhibitors of Tubulin Polymerization.
Topics: Alkylating Agents; Antineoplastic Agents; Ethylenediamines; G2 Phase Cell Cycle Checkpoints; Humans; K562 Cells; Molecular Docking Simulation; Oxazines; Phenothiazines; Piperazines; Polymerization; Quantitative Structure-Activity Relationship; Tubulin; Tubulin Modulators | 2017 |
Cytotoxic and antiplatelet aggregation principles from Aglaia elliptifolia.
Topics: Animals; Antineoplastic Agents, Phytogenic; Benzofurans; Drug Screening Assays, Antitumor; Humans; In Vitro Techniques; Magnetic Resonance Spectroscopy; Mass Spectrometry; Mice; Plant Extracts; Platelet Aggregation; Platelet Aggregation Inhibitors; Rabbits; Spectrophotometry, Infrared; Spectrophotometry, Ultraviolet; Tumor Cells, Cultured | 1997 |
Sulfonate derivatives of naphtho[2,3-b]thiophen-4(9H)-one and 9(10H)-anthracenone as highly active antimicrotubule agents. Synthesis, antiproliferative activity, and inhibition of tubulin polymerization.
Topics: Anthracenes; Cell Cycle; Cell Line, Tumor; Colchicine; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Humans; Naphthalenes; Nocodazole; Podophyllotoxin; Structure-Activity Relationship; Thiophenes; Tubulin; Tubulin Modulators | 2007 |
Synthesis, antiproliferative activity and inhibition of tubulin polymerization by 1,5- and 1,8-disubstituted 10H-anthracen-9-ones bearing a 10-benzylidene or 10-(2-oxo-2-phenylethylidene) moiety.
Topics: Anthracenes; Antineoplastic Agents; Benzylidene Compounds; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Humans; Protein Multimerization; Protein Structure, Quaternary; Tubulin | 2010 |
Synthesis, antiproliferative activity and inhibition of tubulin polymerization by anthracenone-based oxime derivatives.
Topics: Anthracenes; Antineoplastic Agents; Cell Proliferation; Humans; Inhibitory Concentration 50; K562 Cells; Oximes; Protein Multimerization; Protein Structure, Quaternary; Tubulin | 2010 |
Developing structure-activity relationships for the prediction of hepatotoxicity.
Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Humans; Structure-Activity Relationship; Tetracyclines; Thiophenes | 2010 |
A predictive ligand-based Bayesian model for human drug-induced liver injury.
Topics: Bayes Theorem; Chemical and Drug Induced Liver Injury; Humans; Ligands | 2010 |
Exploration of natural compounds as sources of new bifunctional scaffolds targeting cholinesterases and beta amyloid aggregation: the case of chelerythrine.
Topics: Acetylcholinesterase; Amyloid beta-Peptides; Benzophenanthridines; Binding Sites; Butyrylcholinesterase; Catalytic Domain; Cholinesterase Inhibitors; Humans; Isoquinolines; Kinetics; Molecular Docking Simulation; Structure-Activity Relationship | 2012 |