donepezil and acyclovir

donepezil has been researched along with acyclovir in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's5 (83.33)24.3611
2020's1 (16.67)2.80

Authors

AuthorsStudies
Barber, J; Dawson, S; Kenna, JG; Paul, N; Stahl, S1
Cantin, LD; Chen, H; Kenna, JG; Noeske, T; Stahl, S; Walker, CL; Warner, DJ1
Afshari, CA; Chen, Y; Dunn, RT; Hamadeh, HK; Kalanzi, J; Kalyanaraman, N; Morgan, RE; van Staden, CJ1
Chen, M; Hu, C; Suzuki, A; Thakkar, S; Tong, W; Yu, K1
Campillo, NE; Cañada, FJ; Canales, A; Carvalho, I; Chierrito, TPC; Martinez, A; Martínez-Gonzalez, L; Pedersoli-Mantoani, S; Perez, C; Pérez, DI; Roca, C; Sebastian-Pérez, V1
Bhatt, H; Borisa, A; Faldu, K; Patel, P; Shah, J1

Reviews

1 review(s) available for donepezil and acyclovir

ArticleYear
DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans.
    Drug discovery today, 2016, Volume: 21, Issue:4

    Topics: Chemical and Drug Induced Liver Injury; Databases, Factual; Drug Labeling; Humans; Pharmaceutical Preparations; Risk

2016

Other Studies

5 other study(ies) available for donepezil and acyclovir

ArticleYear
In vitro inhibition of the bile salt export pump correlates with risk of cholestatic drug-induced liver injury in humans.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Cholestasis; Drug-Related Side Effects and Adverse Reactions; Humans; Insecta; Rats; Risk Factors

2012
Mitigating the inhibition of human bile salt export pump by drugs: opportunities provided by physicochemical property modulation, in silico modeling, and structural modification.
    Drug metabolism and disposition: the biological fate of chemicals, 2012, Volume: 40, Issue:12

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Bile Acids and Salts; Cell Line; Chemical and Drug Induced Liver Injury; Humans; Quantitative Structure-Activity Relationship

2012
A multifactorial approach to hepatobiliary transporter assessment enables improved therapeutic compound development.
    Toxicological sciences : an official journal of the Society of Toxicology, 2013, Volume: 136, Issue:1

    Topics: Animals; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily B, Member 11; ATP-Binding Cassette Transporters; Biological Transport; Chemical and Drug Induced Liver Injury; Cluster Analysis; Drug-Related Side Effects and Adverse Reactions; Humans; Liver; Male; Multidrug Resistance-Associated Proteins; Pharmacokinetics; Rats; Rats, Sprague-Dawley; Recombinant Proteins; Risk Assessment; Risk Factors; Toxicity Tests

2013
Chameleon-like behavior of indolylpiperidines in complex with cholinesterases targets: Potent butyrylcholinesterase inhibitors.
    European journal of medicinal chemistry, 2018, Feb-10, Volume: 145

    Topics: Acetylcholinesterase; Butyrylcholinesterase; Cholinesterase Inhibitors; Dose-Response Relationship, Drug; Humans; Indoles; Molecular Structure; Piperidines; Structure-Activity Relationship

2018
Insights of Valacyclovir in Treatment of Alzheimer's Disease: Computational Docking Studies and Scopolamine Rat Model.
    Current neurovascular research, 2022, Volume: 19, Issue:3

    Topics: Acetylcholinesterase; Acyclovir; Aged; Alzheimer Disease; Amyloid beta-Peptides; Animals; Antiviral Agents; Butyrylcholinesterase; Donepezil; Humans; Prodrugs; Rats; Scopolamine; Valacyclovir

2022