domperidone has been researched along with fexofenadine in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (60.00) | 29.6817 |
2010's | 2 (40.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Cavalli, A; De Ponti, F; Poluzzi, E; Recanatini, M | 1 |
Li, J; Rajamani, R; Reynolds, CH; Tounge, BA | 1 |
Caron, G; Ermondi, G; Visentin, S | 1 |
Chen, X; Lin, X; Skolnik, S; Wang, J | 1 |
Sen, S; Sinha, N | 1 |
5 other study(ies) available for domperidone and fexofenadine
Article | Year |
---|---|
Toward a pharmacophore for drugs inducing the long QT syndrome: insights from a CoMFA study of HERG K(+) channel blockers.
Topics: Anti-Arrhythmia Agents; Cation Transport Proteins; Cluster Analysis; Databases, Factual; Ether-A-Go-Go Potassium Channels; Long QT Syndrome; Models, Molecular; Molecular Conformation; Potassium Channel Blockers; Potassium Channels; Potassium Channels, Voltage-Gated; Quantitative Structure-Activity Relationship | 2002 |
A two-state homology model of the hERG K+ channel: application to ligand binding.
Topics: ERG1 Potassium Channel; Ether-A-Go-Go Potassium Channels; Ligands; Models, Biological; Models, Molecular; Potassium Channels, Voltage-Gated; Protein Binding; Protein Conformation | 2005 |
GRIND-based 3D-QSAR and CoMFA to investigate topics dominated by hydrophobic interactions: the case of hERG K+ channel blockers.
Topics: Ether-A-Go-Go Potassium Channels; Humans; Hydrophobic and Hydrophilic Interactions; Models, Molecular; Potassium Channel Blockers; Quantitative Structure-Activity Relationship | 2009 |
Attenuation of intestinal absorption by major efflux transporters: quantitative tools and strategies using a Caco-2 model.
Topics: Adenosine; ATP Binding Cassette Transporter, Subfamily B; ATP Binding Cassette Transporter, Subfamily G, Member 2; ATP-Binding Cassette Sub-Family B Member 4; ATP-Binding Cassette Transporters; Biological Transport; Caco-2 Cells; Chromatography, Liquid; Dibenzocycloheptenes; Diketopiperazines; Drug Discovery; Heterocyclic Compounds, 4 or More Rings; Humans; Intestinal Absorption; Mass Spectrometry; Models, Biological; Neoplasm Proteins; Pharmaceutical Preparations; Predictive Value of Tests; Propionates; Quinolines; Substrate Specificity | 2011 |
Predicting hERG activities of compounds from their 3D structures: development and evaluation of a global descriptors based QSAR model.
Topics: Computer Simulation; Ether-A-Go-Go Potassium Channels; Humans; Molecular Structure; Organic Chemicals; Quantitative Structure-Activity Relationship | 2011 |