dmu-212 and fosbretabulin

dmu-212 has been researched along with fosbretabulin* in 2 studies

Other Studies

2 other study(ies) available for dmu-212 and fosbretabulin

ArticleYear
A diaryl sulfide, sulfoxide, and sulfone bearing structural similarities to combretastatin A-4.
    European journal of medicinal chemistry, 2009, Volume: 44, Issue:6

    Studies examining various spacer groups that link the two aromatic rings of combretastatin A-4 (CA4) have shown that the biological activity of analogs does not require the cis-stilbene configuration of CA4. Oxygen or nitrogen, carbonyl, methylene and ethylene spacers, for example, are present in CA4 analogs that show good activity. Up to now sulfur was not tested for this purpose. In this article we describe the synthesis of sulfide, sulfoxide and sulfone spacers between two aromatic rings comparable to those of CA4. We also compared them with CA4 for inhibitory effects on cell growth, tubulin polymerization, and the binding of [(3)H]colchicine to tubulin. We found that the sulfide is highly active and may be a lead compound for the preparation of antitumor compounds.

    Topics: Antineoplastic Agents; Cell Line, Tumor; Cell Proliferation; Colchicine; Drug Design; Drug Screening Assays, Antitumor; Humans; Molecular Structure; Stilbenes; Structure-Activity Relationship; Sulfides; Sulfones; Sulfoxides; Tubulin

2009
Synthesis and evaluation of stilbene and dihydrostilbene derivatives as potential anticancer agents that inhibit tubulin polymerization.
    Journal of medicinal chemistry, 1991, Volume: 34, Issue:8

    An array of cis-, trans-, and dihydrostilbenes and some N-arylbenzylamines were synthesized and evaluated for their cytotoxicity in the five cancer cell cultures A-549 lung carcinoma, MCF-7 breast carcinoma, HT-29 colon adenocarcinoma, SKMEL-5 melanoma, and MLM melanoma. Several cis-stilbenes, structurally similar to combretastatins, were highly cytotoxic in all five cell lines and these were also found to be active as inhibitors of tubulin polymerization. The most active compounds also inhibited the binding of colchicine to tubulin. The most potent of the new compounds, both as a tubulin polymerization inhibitor and as a cytotoxic agent, was (Z)-1-(4-methoxyphenyl)-2-(3,4,5-trimethoxyphenyl)ethene (5a). This substance was almost as potent as combretastatin A-4 (1a), the most active of the combretastatins, as a tubulin polymerization inhibitor. Compound 5a was found to be approximately 140 times more cytotoxic against HT-29 colon adenocarcinoma cells and about 10 times more cytotoxic against MCF-7 breast carcinoma cells than combretastatin A-4. However, 5a was found to be about 20 times less cytotoxic against A-549 lung carcinoma cells, 30 times less cytotoxic against SKMEL-5 melanoma cells, and 7 times less cytotoxic against MLM melanoma cells than combretastatin A-4. The relative potencies 5a greater than 8a greater than 6a for the cis, dihydro, and trans compounds, respectively, as inhibitors of tubulin polymerization are in agreement with the relative potencies previously observed for combretastatin A-4 (1a), dihydrocombretastatin A-4 (1c), and trans-combretastatin A-4 (1b). The relative potencies 5a greater than 8a greater than 6a were also reflected in the results of the cytotoxicity assays. Structure-activity relationships of this group of compounds are also discussed.

    Topics: Antineoplastic Agents; Antineoplastic Agents, Phytogenic; Breast Neoplasms; Chemical Phenomena; Chemistry; Colchicine; Colonic Neoplasms; Humans; Lung Neoplasms; Melanoma; Molecular Structure; Polymers; Stilbenes; Structure-Activity Relationship; Tubulin; Tubulin Modulators; Tumor Cells, Cultured

1991