dmp-696 and 4-(3-pentylamino)-2-7-dimethyl-8-(2-methyl-4-methoxyphenyl)pyrazolo(1-5-a)pyrimidine

dmp-696 has been researched along with 4-(3-pentylamino)-2-7-dimethyl-8-(2-methyl-4-methoxyphenyl)pyrazolo(1-5-a)pyrimidine* in 3 studies

Reviews

1 review(s) available for dmp-696 and 4-(3-pentylamino)-2-7-dimethyl-8-(2-methyl-4-methoxyphenyl)pyrazolo(1-5-a)pyrimidine

ArticleYear
The pharmacology of DMP696 and DMP904, non-peptidergic CRF1 receptor antagonists.
    CNS drug reviews, 2005,Spring, Volume: 11, Issue:1

    CRF(1) antagonists DMP696 and DMP904 were designed as drug development candidates for the treatment of anxiety and depression. Both compounds display nanomolar affinity for human CRF(1) receptors, and exhibit >1000-fold selectivity for CRF(1) over CRF(2) receptors and over a broad panel of other proteins. DMP696 and DMP904 block CRF-stimulated adenylyl cyclase activity in cortical homogenates and cell-lines expressing CRF(1) receptors. Both compounds inhibit CRF-stimulated ACTH release from rat pituitary corticotropes. Binding and functional studies indicate that DMP696 and DMP904 behave as noncompetitive full antagonists. DMP696 and DMP904 exhibit anxiolytic-like efficacy in several rat anxiety models. In the defensive withdrawal test, both compounds reduce exit latency with lowest effective doses of 3 and 1 mg/kg, respectively. The anxiolytic-like effect is maintained over 14 days of repeated dosing. In the context of a novel environment used in this test, DMP696 and DMP904 reverse mild stress-induced increases in plasma CORT secretion but at doses 3-4-fold greater than those required for anxiolyticlike efficacy. DMP696 and DMP904 are ineffective in three depression models including the learned helplessness paradigm at doses up to 30 mg/kg. At lowest anxiolytic-like doses, DMP696 and DMP904 occupy >50% CRF(1) receptors in the brain. The in vivo IC(50) values (plasma concentrations required for occupying 50% CRF(1) receptors) estimated based upon free, but not total, plasma concentrations are an excellent correlation with the in vitro IC(50) values. Neither compound produces sedation, ataxia, chlordiazepoxide-like subjective effects or adverse effects on cognition at doses 10-fold higher than anxiolytic-like doses. Neither compound produces physiologically significant changes in cardiovascular, respiratory, gastrointestinal or renal functions at anxiolytic-like doses. DMP696 and DMP904 have favorable pharmacokinetic profiles with good oral bioavailabilities. The overall pharmacological properties suggest that both compounds may be effective anxiolytics with low behavioral side effect liabilities.

    Topics: Animals; Antidepressive Agents; Anxiety; Behavior, Animal; Brain Chemistry; Dose-Response Relationship, Drug; Drug Administration Routes; Drug Interactions; Humans; Pyrazoles; Pyrimidines; Receptors, Corticotropin-Releasing Hormone; Triazines

2005

Other Studies

2 other study(ies) available for dmp-696 and 4-(3-pentylamino)-2-7-dimethyl-8-(2-methyl-4-methoxyphenyl)pyrazolo(1-5-a)pyrimidine

ArticleYear
Effects of CRF1 receptor antagonists and benzodiazepines in the Morris water maze and delayed non-matching to position tests.
    Psychopharmacology, 2005, Volume: 178, Issue:4

    Benzodiazepines continue to be widely used for the treatment of anxiety, but it is well known that benzodiazepines have undesirable side effects, including sedation, ataxia, cognitive deficits and the risk of addiction and abuse. CRF(1) receptor antagonists are being developed as potential novel anxiolytics, but while CRF(1) receptor antagonists seem to have a better side-effect profile than benzodiazepines with respect to sedation and ataxia, the effects of CRF(1) receptor antagonists on cognitive function have not been well characterized. It is somewhat surprising that the potential cognitive effects of CRF(1) receptor antagonists have not been more fully characterized since there is some evidence to suggest that these compounds may impair cognitive function.. The Morris water maze and the delayed non-matching to position test are sensitive tests of a range of cognitive functions, including spatial learning, attention and short-term memory, so the objective of the present experiments was to assess the effects of benzodiazepines and CRF(1) receptor antagonists in these tests.. The benzodiazepines chlordiazepoxide and alprazolam disrupted performance in the Morris water maze and delayed non-matching to position at doses close to their therapeutic, anxiolytic doses. In contrast, the CRF(1) receptor antagonists DMP-904 and DMP-696 produced little or no impairment in the Morris water maze or delayed non-matching to position test even at doses 10-fold higher than were necessary to produce anxiolytic effects.. The results of the present experiments suggest that, with respect to their effects on cognitive functions, CRF(1) receptor antagonists seem to have a wider therapeutic index than benzodiazepines.

    Topics: Acceleration; Administration, Oral; Alprazolam; Animals; Attention; Chlordiazepoxide; Cognition; Conditioning, Operant; Dose-Response Relationship, Drug; Feeding Behavior; Humans; Maze Learning; Memory, Short-Term; Pyrazoles; Pyrimidines; Rats; Rats, Sprague-Dawley; Receptors, Corticotropin-Releasing Hormone; Swimming; Time Factors; Triazines

2005
Antidepressant-like activity of corticotropin-releasing factor type-1 receptor antagonists in mice.
    European journal of pharmacology, 2004, Sep-19, Volume: 499, Issue:1-2

    The development of selective corticotropin-releasing factor type-1 (CRF1) receptor antagonists represents a potential novel treatment for depression. These studies evaluated CRF1 receptor antagonists for antidepressant-like activity in mice. Subchronic dosing of both R 121919 (3-[6-(dimethylamino)-4-methyl-pyrid-3-yl]-2,5-dimethyl-N,N-dipropyl-pyrazolo[2,3-a]pyrimidin-7-amine) and DMP 696 (4-(1,3-dimethoxyprop-2-ylamino)-2,7-dimethyl-8-(2,4-dichlorophenyl)-pyrazolo[1,5-a]-1,3,5-triazine) significantly decreased immobility time in the tail suspension test (at 30 and at 3 and 10 mg/kg, i.p., respectively). These antidepressant-like effects were observed at doses that did not impair general locomotor activity. Neither antalarmin (N-butyl-N-ethyl-[2,5,6-trimethyl-7-(2,4,6)trimethylphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-yl]amine) nor DMP 904 (4-(3-pentylamino)-2,7-dimethyl-8-(2-methyl-4-methoxyphenyl)-pyrazolo-[1,5-a]-pyrimidine) had an effect indicative of antidepressant-like activity. These results suggest that the tail suspension assay may have utility to identify CRF1 receptor antagonists with antidepressant-like activity. Moreover, the results lend support to the theory that some nonpeptidic CRF1 receptor antagonists may possess antidepressant-like activity and therefore represent a promising novel pharmacotherapeutic strategy in the treatment of depression.

    Topics: Animals; Antidepressive Agents; Clorgyline; Desipramine; Dose-Response Relationship, Drug; Fluoxetine; Hindlimb Suspension; Male; Mice; Morpholines; Motor Activity; Paroxetine; Pyrazoles; Pyrimidines; Pyrroles; Reboxetine; Receptors, Corticotropin-Releasing Hormone; Selegiline; Swimming; Tranylcypromine; Triazines

2004