dizocilpine-maleate has been researched along with zinc-chloride* in 9 studies
9 other study(ies) available for dizocilpine-maleate and zinc-chloride
Article | Year |
---|---|
Long-lasting antidepressant-like activity of the GPR39 zinc receptor agonist TC-G 1008.
The discovery of the zinc-sensing receptor, has provided new possibilities for explaining the neurobiology of zinc. Recent studies indicate that the GPR39 zinc receptor may play an important role in the pathogenesis of depression as well as in the antidepressant mechanism of action.. In this study we evaluated the time-course of the antidepressant response of the GPR39 agonist (TC-G 1008), imipramine, ZnCl. A single administration of the GPR39 agonist caused an antidepressant-like effect lasting up to 24 h following the injection, which is longer than the effect of imipramine, ZnCl. TC-G 1008 is new drug designed to study GPR39 therefore additional pharmacodynamic and pharmacokinetic properties in preclinical studies are required.. This study shows for the first time the long-lasting antidepressant effect of the GPR39 agonist in comparison with imipramine, ZnCl2 and MK-801. Our findings suggest that GPR39 should be considered as a target in efforts to develop new antidepressant drugs. Topics: Animals; Antidepressive Agents; Brain-Derived Neurotrophic Factor; Chlorides; Depression; Dizocilpine Maleate; Hippocampus; Imipramine; Male; Mice; Pyrimidines; Receptors, G-Protein-Coupled; Sulfonamides; Swimming; Time Factors; Zinc; Zinc Compounds | 2019 |
Glucose starvation stimulates Zn2+ toxicity in cultures of cerebellar granule neurons.
Zinc chloride (0.02 mM, 3h) did not have any influence on the survival of cerebellar granule neurons (CGNs) incubated in balanced salt solution (BSS). However, in the absence of glucose ZnCl(2) caused severe neuronal damage, decreasing cell survival to 12±2%. Either the blockade of ionotropic glutamate NMDA-receptors with MK-801 or APV or supplementation the medium with ruthenium red (mitochondrial Ca(2+) uniporter blocker) almost entirely protected CGNs from the toxic effect of ZnCl(2) during glucose deprivation (GD). However, NBQX (AMPA/kainate glutamate receptor blocker) did not show protective effect. Measurements of intracellular calcium ions concentration using fluorescent probe (Fluo-4 AM) and zinc ions (FluoZin-3AM) demonstrated that 1.5h-exposure to GD induced intensive increase of Fluo-4 fluorescence and small increase of FluoZin-3 fluorescence in neurons. The supplementation of medium with ZnCl(2) caused equal increase of FluoZin-3 fluorescence at both GD and normoglycemia, whereas the potentiation of Fluo-4 fluorescence by zinc was observed only under GD and could be prevented by MK-801. However, neither MK-801 nor NBQX could influence [Zn(2+)](i) increase caused by zinc addition under GD, while ruthenium red did cause significant increase of [Zn(2+)](i). This data implies that zinc ions during GD induce an additional overload of CGNs with calcium ions that get transported through activated NMDA-channel. Zinc and calcium ions accumulate in mitochondria and amplify individual destructive action on these organelles leading to neuronal death. Topics: Animals; Calcium; Cell Death; Cells, Cultured; Cerebellum; Chlorides; Coloring Agents; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Glucose; Neurons; Neuroprotective Agents; Quinoxalines; Rats; Rats, Wistar; Ruthenium Red; Zinc Compounds | 2012 |
Involvement of NMDA receptors in the antidepressant-like action of adenosine.
In this work, the contribution of NMDA receptors to the antidepressant-like effect of adenosine in the forced swimming test (FST) was investigated.. The pretreatment of mice with NMDA or D-serine was able to prevent the anti-immobility effect of either adenosine or MK-801 in the FST. In addition, the administration of a sub-effective dose of adenosine produced a synergistic effect with sub-effective doses of MK-801, ketamine and zinc chloride. Moreover, the immobility time of the mice treated with active doses of adenosine or N(6)-cyclohexyladenosine (CHA) plus MK-801 was not significantly different from that obtained with adenosine, CHA and MK-801 alone; by contrast, the combination between active doses of adenosine and CHA plus an active dose of the tricyclic antidepressant imipramine produced a greater effect in the FST than the administration of either drug alone.. Together, the results suggest that the effect of adenosine in the FST is likely dependent on the inhibition of NMDA receptors mediated by the activation of adenosine A(1) receptors. Topics: Adenosine; Animals; Antidepressive Agents; Antidepressive Agents, Tricyclic; Chlorides; Depression; Dizocilpine Maleate; Dose-Response Relationship, Drug; Drug Synergism; Imipramine; Immobilization; Ketamine; Male; Mice; N-Methylaspartate; Receptor, Adenosine A1; Receptors, N-Methyl-D-Aspartate; Serine; Swimming; Time Factors; Zinc Compounds | 2012 |
Activation of a novel injury-induced calcium-permeable channel that plays a key role in causing extended neuronal depolarization and initiating neuronal death in excitotoxic neuronal injury.
Protracted elevation in intracellular calcium caused by the activation of the N-methyl-d-aspartate receptor is the main cause of glutamate excitotoxic injury in stroke. However, upon excitotoxic injury, despite the presence of calcium entry antagonists, calcium unexpectedly continues to enter the neuron, causing extended neuronal depolarization and culminating in neuronal death. This phenomenon is known as the calcium paradox of neuronal death in stroke, and it represents a major problem in developing effective therapies for the treatment of stroke. To investigate this calcium paradox and to determine the source of this unexpected calcium entry after neuronal injury, we evaluated whether glutamate excitotoxicity activates an injury-induced calcium-permeable channel responsible for conducting a calcium current that underlies neuronal death. We used a combination of whole-cell and single-channel patch-clamp recordings, fluorescent calcium imaging, and neuronal cell death assays in a well characterized primary hippocampal neuronal culture model of glutamate excitotoxicity/stroke. Here, we report activation of a novel calcium-permeable channel upon excitotoxic glutamate injury that carries calcium current even in the presence of calcium entry inhibitors. Blocking this injury-induced calcium-permeable channel for a significant time period after the initial injury is still effective in preventing calcium entry, extended neuronal depolarization, and delayed neuronal death, thereby accounting for the calcium paradox. This injury-induced calcium-permeable channel represents a major source for the initial calcium entry following stroke, and it offers a new target for extending the therapeutic window for preventing neuronal death after the initial excitotoxic (stroke) injury. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Animals, Newborn; Apoptosis; Calcium; Calcium Channel Blockers; Calcium Channels; Cells, Cultured; Chlorides; Cobalt; Dizocilpine Maleate; Dose-Response Relationship, Drug; Electric Impedance; Ethosuximide; Gadolinium; Glutamic Acid; Membrane Potentials; Neurons; Nifedipine; omega-Conotoxins; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Sodium; Stroke; Zinc Compounds | 2007 |
Differential effects of zinc on glutamatergic and GABAergic neurotransmitter systems in the hippocampus.
Approximately 10% of total zinc in the brain exists in synaptic vesicles of glutamatergic neurons; however, the function of vesicular zinc is poorly understood. The presynaptic action of zinc against excitatory and inhibitory neurotransmission was studied in rat hippocampus using in vivo microdialysis. When the hippocampal CA3 region was perfused with 10-300 microM ZnCl(2), the level of glutamate in the perfusate was decreased, whereas the level of gamma-aminobutyric acid (GABA) was increased. Chelation of endogenous zinc with CaEDTA increased the glutamate level in the perfusate but decreased the GABA level, suggesting that zinc released into the synaptic cleft acts differentially on glutamatergic and GABAergic neurons in the CA3 region. The increase of GABA level by zinc was antagonized by 2,3-dioxo-6-nitro-1,2.3,4-tetrahydrobenzo(f)quinoxaline-7-sulphonamide (NBQX), an antagonist of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)/kainate receptors, but not affected by MK801, an antagonist of N-methyl-D-aspartate (NMDA) receptors, and verapamil, a blocker of voltage-dependent calcium channels. The present study suggests that zinc enhances GABA release via potentiation of AMPA/kainate receptors in the CA3 region, followed by a decrease in presynaptic glutamate release in the same region. Zinc seems to be an inhibitory neuromodulator of glutamate release. Topics: Animals; Calcium Channel Blockers; Chelating Agents; Chlorides; Dizocilpine Maleate; Down-Regulation; Excitatory Amino Acid Antagonists; gamma-Aminobutyric Acid; Glutamic Acid; Hippocampus; Male; Neural Inhibition; Neural Pathways; Presynaptic Terminals; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Synapses; Synaptic Transmission; Up-Regulation; Zinc; Zinc Compounds | 2004 |
Involvement of NMDA receptors and L-arginine-nitric oxide pathway in the antidepressant-like effects of zinc in mice.
This study investigated the involvement of NMDA receptors and the L-arginine-nitric oxide (NO) pathway in the antidepressant-like effects of zinc in the forced swimming test (FST). The immobility times in the FST and in the tail suspension test (TST) were reduced by zinc chloride (ZnCl(2), 30 and 10-30 mg/kg intraperitoneal (i.p.), respectively). The doses active in the FST and TST reduced locomotor activity in an open-field. The antidepressant-like effect of ZnCl(2) in the FST was prevented by pre-treatment of animals with guanosine 5'-monophosphate (GMP), ascorbic acid, L-arginine, or S-nitroso-N-acetyl-penicillamine (SNAP), but not with D-arginine, administered at doses that per se produced no anti-immobility effect. The immobility time of mice treated with ZnCl(2)+MK-801 was not different from the result obtained with ZnCl(2) or MK-801 alone, but ZnCl(2)+imipramine had a greater effect in the FST than administration of either drug alone. Pre-treatment of animals with a sub-threshold dose of ZnCl(2) prevented the anti-immobility effect of MK-801, ketamine, GMP, L-arginine or N(G)-nitro-L-arginine (L-NNA), but did not alter the effect of imipramine or fluoxetine. Taken together, the results demonstrate that zinc produced an antidepressant-like effect that seems to be mediated through its interaction with NMDA receptors and the L-arginine-NO pathway. Topics: Animals; Antidepressive Agents; Arginine; Ascorbic Acid; Behavior, Animal; Chlorides; Depression; Dizocilpine Maleate; Dose-Response Relationship, Drug; Drug Combinations; Drug Interactions; Excitatory Amino Acid Antagonists; Female; Fluoxetine; Free Radical Scavengers; Guanosine Monophosphate; Hindlimb Suspension; Imipramine; Immobilization; Ketamine; Male; Mice; Motor Activity; Nitric Oxide; Nitric Oxide Donors; Pain Measurement; Receptors, N-Methyl-D-Aspartate; S-Nitroso-N-Acetylpenicillamine; Swimming; Time Factors; Zinc Compounds | 2003 |
Blockade by ferrous iron of Ca2+ influx through N-methyl-D-aspartate receptor channels in immature cultured rat cortical neurons.
Rat cortical neurons cultured for 3 days in vitro were loaded with the fluorescent indicator fluo-3 for assessment of intracellular free calcium ion (Ca2+) concentrations with the aid of a confocal laser-scanning microscope. In the absence of added MgCl2, the addition of NMDA induced a rapid but sustained increase in the number of fluorescent neurons in a concentration-dependent manner at a concentration range of 1-100 micro m with the increase by KCl being transient. The addition of FeCl2, but not FeCl3, markedly inhibited the increase by NMDA in a reversible manner at concentrations of 10-200 micro m, without affecting that by KCl. Extensive analyses revealed clear differentiation between inhibitions by ferrous iron and other channel blockers known to date. The inhibition by FeCl2 was completely prevented by the addition of two different iron chelators. Exposure to NMDA alone did not lead to cell death in immature cultured neurons, however, while further addition of FeCl2 invariably induced neuronal cell death 24 h after exposure. These results give support to our previous proposal that NMDA receptor complex may contain a novel site sensitive to blockade by ferrous iron in rat brain. Topics: Animals; Calcium; Cell Death; Cell Survival; Cells, Cultured; Cerebral Cortex; Chlorides; Dizocilpine Maleate; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Ferric Compounds; Ferrous Compounds; Fluorescent Dyes; Ion Transport; Iron Chelating Agents; Magnesium Chloride; Microscopy, Confocal; N-Methylaspartate; Neurons; Potassium Chloride; Rats; Receptors, N-Methyl-D-Aspartate; Zinc Compounds | 2002 |
The role of the N-methyl-D-aspartic acid receptor in the relaxant effect of ketamine on tracheal smooth muscle.
Ketamine and magnesium (Mg2+), well known bronchodilators, have been used to treat patients with status asthmaticus. Both can block the N-methyl-D-aspartic acid (NMDA) receptor. NMDA receptors exist in the airway, and their activation seems to be linked to the release actions of sensory neuropeptides resulting in increased airway tone. We sought to determine whether ketamine relaxes the guinea pig trachea contracted by histamine by blocking the NMDA receptor. Female guinea pigs (250-400 g) were killed with an overdose of pentobarbital. The trachea was removed and cut spirally into strips 3 mm wide and 15 mm long. The strips were mounted in a 10-mL organ bath filled with Tyrode's solution bubbled through with 95% O2/5% CO2 at 37 degrees C. Strip contractions were measured isometrically with a force displacement transducer. We then studied the effect of NMDA receptor antagonists on histamine-induced tracheal contraction. In this protocol, we examined the effect of ketamine, Mg2+, zinc (Zn2+), or MK-801 (a noncompetitive NMDA receptor blocker) on strips contracted by 10(-5) M histamine. After full contraction was attained, ketamine (0.5-1.5 mM), MgSO4 (2-8 mM), ZnCl2(0.2-0.8 mM), or MK-801 (1.5-6 x 10(-5) M) was added, and the strip tension was measured again. We also studied the effect of NMDA on the relaxation by ketamine. After full contraction by 10(-5) M histamine, 0.5-1.5 mM KET was added alone or in combination with 0.1 mM NMDA, and the strip tension was measured again. Finally, we measured the effect of MK-801 on the relaxant effect of ketamine. After full contraction by 10(-5) M histamine, 0.5-2 mM ketamine was added alone or in combination with 0.75 or 1.5 x 10(-5) M MK-801, and the strip tension was measured again. All NMDA receptor antagonists tested reversed the tracheal contraction induced by histamine in a dose-dependent manner. However, neither the agonist NMDA nor the noncompetitive receptor blocker MK-801 affected tracheal relaxation induced by ketamine. We conclude that ketamine relaxes the tracheal smooth muscle contracted by histamine through a mechanism independent of NMDA receptors. The decreased bronchomotor tone induced by ketamine is probably due to interference with a Ca2+-requiring step necessary to maintain the contraction caused by histamine.. Stimulation of the N-methyl-D-aspartic acid (NMDA) receptor in the airway results in airway constriction. The bronchodilator ketamine blocks the NMDA receptor. However, ketamine relaxes the guinea pig trachea contracted by histamine through a mechanism independent of the NMDA receptor. Topics: Animals; Bronchodilator Agents; Chlorides; Dizocilpine Maleate; Dose-Response Relationship, Drug; Female; Guinea Pigs; Histamine; In Vitro Techniques; Ketamine; Magnesium Sulfate; Muscle Contraction; Muscle Relaxation; Muscle, Smooth; Receptors, N-Methyl-D-Aspartate; Trachea; Zinc Compounds | 1998 |
N-methyl-D-aspartate increases cytoplasmic free calcium in mouse hippocampus.
The effect of N-methyl-D-aspartate (NMDA) and L-glutamate on the concentration of intracellular free calcium (Cai) and on uptake of the calcium was determined in microsacs and synaptosomes isolated from mouse brain. L-Glutamate and NMDA increased Cai in hippocampal microsacs but had little or no effect on Cai in microsacs, isolated from cortex or cerebellum or in synaptosomes. N-Methyl-D-aspartate also increased uptake of calcium, measured using 45Ca into hippocampal microsacs. The EC50 values for NMDA-stimulated increases in Cai and uptake of calcium in microsacs were about 30 microM. Maximum responses were observed with 100 microM NMDA. Increases in Cai stimulated by NMDA were dependent on extracellular calcium, indicating that NMDA increased Cai in microsacs by increasing conductance through an NMDA receptor-operated cation channel, rather than by releasing calcium from intracellular stores. The NMDA antagonists, 5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801), 2-amino-5-phosphonopentanoic acid (AP-5), magnesium and zinc blocked responses to NMDA. This demonstrates NMDA-mediated effects on ion flux in a cell-free preparation from brain. This preparation may be useful for study of the in vitro effects of drugs or toxins on NMDA receptors in brain. Topics: 2-Amino-5-phosphonovalerate; Animals; Calcium; Chlorides; Cytoplasm; Dizocilpine Maleate; Hippocampus; Magnesium Chloride; Male; Mice; Mice, Inbred ICR; N-Methylaspartate; Receptors, N-Methyl-D-Aspartate; Synaptosomes; Zinc; Zinc Compounds | 1991 |